Have a personal or library account? Click to login
Analysis of Inter-Primer Binding Site Retrotransposon Length Polymorphism in Selected Group of Vaccinium corymbosum Cover

Analysis of Inter-Primer Binding Site Retrotransposon Length Polymorphism in Selected Group of Vaccinium corymbosum

Open Access
|Oct 2024

References

  1. Ali, F., Yılmaz, A., Nadeem, M. A., Habyarimana, E., Subaşı, I., Nawaz, M. A., Chaudhary, H. J., Shahid, M. Q., Ercişli, S., Zia, M. A. B., Chung, G., & Baloch, F. S. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PloS One, 14(2), e0211985. https://doi.org/10.1371/journal.pone.0211985
  2. Amiryousefi, A., Hyvönen, J., & Poczai, P. (2018). iMEC: Online Marker Efficiency Calculator. Applications in Plant Sciences, 6(6), e01159. https://doi.org/10.1002/aps3.1159
  3. Amom, T., Tikendra, L., Apana, N., Goutam, M., Sonia, P., Koijam, A. S., Potshangbam, A. M., Rahaman, H., & Nongdam, P. (2020). Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry, 174, 112330. https://doi.org/10.1016/j.phytochem.2020.112330
  4. Aruna, M., Ozias-Akins, P., Austin, M. E., & Kochert, G. (1993). Genetic relatedness among rabbiteye blueberry (Vaccinium ashei) cultivars determined by DNA amplification using single primers of arbitrary sequence. Genome, 36(5), 971–977. https://doi.org/10.1139/g93-127
  5. Aydın, F., Özer, G., Alkan, M., & Çakır, İ. (2020). The utility of iPBS retrotransposons markers to analyze genetic variation in yeast. International Journal of Food Microbiology, 325, 108647. https://doi.org/10.1016/j.ijfoodmicro.2020.108647
  6. Baloch, F. S., Guizado, S. J. V., Altaf, M. T., Yüce, I., Çilesiz, Y., Bedir, M., Nadeem, M. A., Hatipoglu, R., & Gómez, J. C. C. (2022). Applicability of inter-primer binding site iPBS- retrotransposon marker system for the assessment of genetic diversity and population structure of Peruvian rosewood (Aniba rosaeodora Ducke) germplasm. Molecular Biology Reports, 49(4), 2553–2564. https://doi.org/10.1007/s11033-021-07056-8
  7. Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture And Forestry, 44(5), 479–491. https://doi.org/10.3906/tar-2001-10
  8. Başak, İ., Özer, G., & Muradoğlu, F. (2022). Morphometric traits and iPBS based molecular characterizations of walnut (Juglans regia L.) genotypes. Genetic Resources and Crop Evolution, 69(8), 2731–2743. https://doi.org/10.1007/s10722-022-01394-7
  9. Bassil, N., Bidani, A., Hummer, K., Rowland, L. J., Olmstead, J., Lyrene, P., & Richards, C. (2018). Assessing genetic diversity of wild southeastern North American Vaccinium species using microsatellite markers. Genetic Resources and Crop Evolution, 65(3), 939–950. https://doi.org/10.1007/s10722-017-0585-2
  10. Bassil, N., Bidani, A., Nyberg, A., Hummer, K., & Rowland, L. J. (2020). Microsatellite markers confirm identity of blueberry (Vaccinium spp.) plants in the USDA-ARS National Clonal Germplasm Repository collection. Genetic Resources and Crop Evolution, 67(2), 393–409. https://doi.org/10.1007/s10722-019-00873-8
  11. Bian, Y., Ballington, J., Raja, A., Brouwer, C., Reid, R., Burke, M., Wang, X., Rowland, L. J., Bassil, N., & Brown, A. (2014). Patterns of simple sequence repeats in cultivated blueberries (Vaccinium section Cyanococcus spp.) and their use in revealing genetic diversity and population structure. Molecular Breeding, 34(2), 675–689. https://doi.org/10.1007/s11032-014-0066-7
  12. Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1), 169–196. https://doi.org/10.1007/s10681-005-1681-5
  13. Coutinho, J., Carvalho, A., Martín, A., & Lima-Brito, J. (2018). Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers. Molecular Biology Reports, 45. https://doi.org/10.1007/s11033-018-4146-3
  14. Debnath, S. C. (2005). Differentiation of Vaccinium Cultivars and Wild Clones Using RAPD Markers. Journal of Plant Biochemistry and Biotechnology, 14(2), 173–177. https://doi.org/10.1007/BF03355954
  15. Demirel, U., Tındaş, İ., Yavuz, C., Baloch, F. S., & Çalışkan, M. E. (2018). Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genetic Resources, 16(2), 137–145. https://doi.org/10.1017/S1479262117000041
  16. DendroUPGMA (2023). Dendrogram construction using the UPGMA algorithm. (n.d.). Cit 30. august 2023, from http://genomes.urv.cat/UPGMA/
  17. Galletta, G. J., & Ballington, J. R. (1996). Blueberries, cranberries and lingonberries. Fruit breeding, 2(1), 107.
  18. Garriga, M., Parra, P. A., Caligari, P. D. S., Retamales, J. B., Carrasco, B. A., Lobos, G. A., & García-Gonzáles, R. (2013). Application of inter-simple sequence repeats relative to simple sequence repeats as a molecular marker system for indexing blueberry cultivars. Canadian Journal of Plant Science, 93(5), 913–921. https://doi.org/10.4141/cjps2013-057
  19. GelAnalyzer (2023). (n.d.). Cit 30. august 2023, from http://www.gelanalyzer.com/?i=1
  20. Guo, D.-L., Guo, M.-X., Hou, X.-G., & Zhang, G.-H. (2014). Molecular diversity analysis of grape varieties based on iPBS markers. Biochemical Systematics and Ecology, 52, 27–32. https://doi.org/10.1016/j.bse.2013.10.008
  21. Herrera-Balandrano, D. D., Chai, Z., Beta, T., Feng, J., & Huang, W. (2021). Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends in Food Science & Technology, 118, 808–821. https://doi.org/10.1016/j.tifs.2021.11.006
  22. Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A. H. (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121(8), 1419–1430. https://doi.org/10.1007/s00122-010-1398-2
  23. Kalt, W., Cassidy, A., Howard, L. R., Krikorian, R., Stull, A. J., Tremblay, F., & Zamora-Ros, R. (2020). Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Advances in Nutrition, 11(2), 224–236. https://doi.org/10.1093/advances/nmz065
  24. Karık, Ü., Nadeem, M. A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., Yang, S. H., Chung, G., & Baloch, F. S. (2019). Exploring the Genetic Diversity and Population Structure of Turkish Laurel Germplasm by the iPBS-Retrotransposon Marker System. Agronomy, 9(10). https://doi.org/10.3390/agronomy9100647
  25. Levi, A., & Rowland, L. J. (1997). Identifying Blueberry Cultivars and Evaluating Their Genetic Relationships Using Randomly Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeat- (SSR-) anchored Primers. Journal of the American Society for Horticultural Science, 122(1), 74–78. https://doi.org/10.21273/JASHS.122.1.74
  26. Liu, Y., Liu, S., Liu, D., Wei, Y., Liu, C., Yang, Y., Tao, C., & Liu, W. (2014). Exploiting EST databases for the development and characterization of EST-SSR markers in blueberry (Vaccinium) and their cross-species transferability in Vaccinium spp. Scientia Horticulturae, 176, 319–329. https://doi.org/10.1016/j.scienta.2014.07.026
  27. Martinez, M. C., Plata Tamayo, M. I., & Hopp, H. E. (2007). Molecular identification of genetic patterns in different blueberry samples (Vaccinium sp.). RIA, Revista de Investigaciones Agropecuarias, 36(2), 3–15.
  28. Matsumoto, T. (2019). Rapid evaluation of the genetic stability of rabbiteye blueberry plants regenerated from cryopreserved shoot tips by using long promer-RAPD analysis. J. JSATM, 25(3), 71–76.
  29. Özer, G., Bayraktar, H., & Baloch, F. S. (2016). iPBS retrotransposons ‘A Universal Retrotransposons’ now in molecular phylogeny of fungal pathogens. Biochemical Systematics and Ecology, 68, 142–147. https://doi.org/10.1016/j.bse.2016.07.006
  30. Rashidinejad, A. (2020). Chapter 29 – Blueberries. V A. K. Jaiswal (Ed.), Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 467–482). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00029-5
  31. Rowland, L. J., Ogden, E. L., Bassil, N., Buck, E. J., McCallum, S., Graham, J., Brown, A., Wiedow, C., Campbell, A. M., Haynes, K. G., & Vinyard, B. T. (2014). Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Molecular Breeding, 34(4), 2033–2048. https://doi.org/10.1007/s11032-014-0161-9
  32. Spooner, D. M. (2005). Molecular markers for genebank management. Bioversity International.
  33. Tikendra, L., Amom, T., & Nongdam, P. (2019). Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw. – A rare medicinal orchid, using RAPD and ISSR markers. Plant Gene, 19. https://doi.org/10.1016/j.plgene.2019.100196
  34. Wolfe, A. D., & Liston, A. (1998). Contributions of PCR-Based Methods to Plant Systematics and Evolutionary Biology. V D. E. Soltis, P. S. Soltis, & J. J. Doyle (Ed.), Molecular Systematics of Plants II: DNA Sequencing (pp. 43–86). Springer US. https://doi.org/10.1007/978-1-4615-5419-6_2
  35. Žiarovská, J. (2022). Analyse of iPBS lenght polymorphism in selected group of Vitis vinifera, L varieties. Acta fytotechnica et zootechnica, 25, 122–129. https://doi.org/10.15414/afz.2022.25.02.122-129
DOI: https://doi.org/10.2478/ahr-2024-0017 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 112 - 116
Submitted on: Dec 21, 2023
Accepted on: May 27, 2024
Published on: Oct 30, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Lucia Klongová, Jana Bilčíková, Lucia Urbanová, Jana Žiarovská, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.