Have a personal or library account? Click to login
Antioxidant capacity of wild-growing bilberry, elderberry, and strawberry fruits Cover

Antioxidant capacity of wild-growing bilberry, elderberry, and strawberry fruits

Open Access
|Dec 2021

References

  1. Al-Ani, M., Opara, L. U., Al-Bahri, D. & Al-Rahbi, N. (2007). Spectrophotometric quantification of ascorbic acid contents of fruit and vegetables using 2,4-dinitrophenylhydrazine method. Journal of Food, Agriculture and Environment, 5(3–4), 165–168.
  2. BeMiller, J. N. (2010). Carbohydrate analysis. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 147–177). Springer. https://doi.org/10.1007/978-1-4419-1478-1">https://doi.org/10.1007/978-1-4419-1478-1
  3. Bernal, L. J., Melo, L. A. & Moreno, C. D. (2014). Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Revista Facultad National de Agronomia Medellin, 67(1), 7209–7218.
  4. Bradley, R. L. Jr. (2010). Moisture and total solids analysis. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 85–104). Springer. https://doi.org/10.1007/978-1-4419-1478-1">https://doi.org/10.1007/978-1-4419-1478-1
  5. Bunea, A., Rugină, D. O., Pintea. A. M., Sconţa, Z., Bunea, C. I. & Socaciu, C. (2011). Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Hort Agrobotanici, 39(2), 70–76.
  6. Celik, F., Bozhuyuk, M. R., Ercisli, S. & Gundogdu, M. (2018). Physicochemical and bioactive characteristics of wild grown bilberry (Vaccinium myrtillus L.) genotypes from northeastern Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 128–133. https://doi.org/10.15835/nbha46110842">https://doi.org/10.15835/nbha46110842
  7. Colak, N., Torun, H., Gruz, J., Strnad, M., Subrtova, M., Inceer, H. & Ayaz, F. A. (2016). Comparison of phenolics and phenolic acid profiles in conjunction with oxygen radical absorbing capacity (ORAC) in berries of Vaccinium arctostaphylos L. and V. myrtillus L. Polish Journal of Food and Nutrition Sciences, 66(2), 85–91. https://doi.org/10.1515/pjfns-2015-0053">https://doi.org/10.1515/pjfns-2015-0053
  8. Dosedĕl, M., Jirkovský, E., Macáková, K., Kujovská Krčmová, L., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L.& Mladĕnka, P. (2021). Vitamic C – sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 13(12), 615. https://doi.org/10.3390/nu13020615">https://doi.org/10.3390/nu13020615
  9. Dyduch-Siemińska, M., Najda, A., Dyduch, J., Gantner, M. & Klimek, K. (2015). The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.). Journal of Analytical Methods in Chemistry, 2015. 10.1155/2015/831238">http://dx.doi.org/10.1155/2015/831238
  10. Elez Garofulić, I., Kovačević Ganić, K., Galić, I., Dragović-Uzelac, V. & Savić, Z. (2012). The influence of processing on physic-chemical parameters, phenolics, antioxidant activity and sensory attributes of elderberry (Sambucus nigra L.) fruit wine. Croatian Journal of Food Technology, Biotechnology and Nutrition, 7(Special issue – 7th), 9–13.
  11. Enomoto, H., Takahashi, S., Takeda, S. & Hatta, H. (2020). Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules, 25(1), 103. https://doi.org/10.3390/molecules25010103">https://doi.org/10.3390/molecules25010103
  12. Fenech, M., Amaya, I., Valpuesta V. & Botella, M. A. (2019). Vitamin C content in fruits: biosynthesis and regulation. Frontiers in Plant Science, 9, 2006. https://doi.org/10.3389/fpls.2018.02006">https://doi.org/10.3389/fpls.2018.02006
  13. Giusti, M. M.& Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: S. J. Schwartz, & R. E. Wrolstad (Eds.) Current Protocols in Food Analytical Chemistry. John Wiley and Sons. https://doi.org/10.1002/0471142913.faf0102s00">https://doi.org/10.1002/0471142913.faf0102s00
  14. Hidalgo, G-I. & Almajano, M. P. (2017). Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants, 6(1), 7. https://doi.org/10.3390/antiox6010007">https://doi.org/10.3390/antiox6010007
  15. Johnson, S. A. & Arjmandi, B. H. (2013). Evidence for anti-cancer properties of blueberries: a mini-review. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1142–1148. https://doi.org/10.2174/18715206113139990137">https://doi.org/10.2174/18715206113139990137
  16. Kalaskar, M. G. & Surana, S. J. (2014). Free radical scavenging, immunomodulatory activity and chemical composition of Luffa acutangula var. amara (Cucurbitaceae) pericarp. Journal of the Chilean Chemical Society, 59(1), 2299–2302. https://doi.org/10.4067/S0717-97072014000100012">https://doi.org/10.4067/S0717-97072014000100012
  17. Kasote, D. M., Katyare, S. S., Hegde, M. V. & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://dx.doi.org/10.7150%2Fijbs.12096
  18. Kevers, C., Pincemail, J., Defraigne, J. O. & Dommes, J. (2014). Antioxidant capacity of small dark fruits: influence of cultivars and harvest time. Journal of Berry Research, 4(2), 97–105.
  19. Lai, H. Y. & Lim, Y. Y. (2011). Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. International Journal of Environmental Science and Development, 2(6), 442–447.
  20. Laličić-Petronijević, J., Komes, D., Gorjanović, S., Belščak-Cvitanović, A., Pezo, L., Pastor, F., Ostojić, S., Popov-Rajić, J. & Sužnjević, D. (2016). Content of total phenolics, flavan-3-ols and proanthocyanidins, oxidative stability and antioxidant capacity of chocolate during storage. Food Technology and Biotechnology, 54(1), 13–20. https://dx.doi.org/10.17113%2Fftb.54.01.16.4014
  21. Liston, A., Cronn, R. & Ashman T. L. (2014). Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 101(10), 1686–1699. https://doi.org/10.1002/jsfa.6432">https://doi.org/10.1002/jsfa.6432
  22. Manganaris, G. A., Goulas, V., Vicente, A. R. & Terry, L. A. (2013). Berry antioxidants: small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825–833. https://doi.org/10.1002/jsfa.6432">https://doi.org/10.1002/jsfa.6432
  23. Marcocci, L., Maguire, J. J., Droy-Lefaix, M. T. & Packer, L. (1994). The nitric oxide scavenging properties of Ginkgo biloba extract EGb761. Biochemical and Biophysical Research Communication, 201(2), 748–755. https://doi.org/10.1006/bbrc.1994.1764">https://doi.org/10.1006/bbrc.1994.1764
  24. Milivojevic, J., Maksimovic, V., Dragisic Maksimovic, J., Radivojevic, D., Poledica, M. & Ercişli, S. (2012). A comparison of major taste- and health-related compounds of Vaccinium berries. Turkish Journal of Biology, 36(6), 738–745. 10.3906/biy-1206-39">http://dx.doi.org/10.3906/biy-1206-39
  25. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V. & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring and antioxidant status in premature neonates. Clinical Science, 84(4), 407–412. https://doi.org/10.1042/cs0840407">https://doi.org/10.1042/cs0840407
  26. Młynarczyk, K., Walkowiak-Tomczak, D. & Łysiak, G. P. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025">https://doi.org/10.1016/j.jff.2017.11.025
  27. Nagavani, V. & Raghava Rao, T. (2010). Evaluation of antioxidant potential and identification of polyphenols by RP-HPLC in Michelia champaca flowers. Advances in Biological Research, 4(3), 159–168.
  28. Najda, A., Dyduch-Siemińska, M., Dyduch, J. & Gantner, M. (2014). Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Annals of Agricultural and Environmental Medicine, 21(2), 339–343. https://doi.org/10.5604/1232-1966.1108601">https://doi.org/10.5604/1232-1966.1108601
  29. Oanacea, S., Ghincevici, D. & Ketney, O. (2015). The effect of ultrasonic pretreatment and sample preparation on the extraction yield of antioxidant compounds and activity of black currant fruits. Acta Chimica Slovenica, 62(1), 242–248. https://doi.org/10.17344/acsi.2014.895">https://doi.org/10.17344/acsi.2014.895
  30. Özgen, M., Scheerens, J. C., Reese, R. N. & Miller, R. A. (2010). Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacognosy Magazine, 6(23), 198–203. https://doi.org/10.4103/0973-1296.66936">https://doi.org/10.4103/0973-1296.66936
  31. Panche, A. N., Diwan, A. D. & Changdra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5(e47), 1–15. https://doi.org/10.1017/jns.2016.41">https://doi.org/10.1017/jns.2016.41
  32. Peñarrieta, J. M., Alvarado, J. A., Bergenståhl, B.& Akesson, B. (2009). Total antioxidant capacity and content of phenolic compounds in wild strawberries (Fragaria vesca) collected in Bolivia. International Journal of Fruit Science, 9(4), 344–359. https://doi.org/10.1080/15538360903378526">https://doi.org/10.1080/15538360903378526
  33. Poiana, M. A., Alexa, E. & Mateescu, C. (2012). Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration. Chemistry Central Journal, 6(1), 1–11. https://doi.org/10.1186/1752-153X-6-4">https://doi.org/10.1186/1752-153X-6-4
  34. Prvulović, D., Malenčić, Dj., Ljubojević, M., Barać, G. & Ognjanov, V. (2016). The influence of maturity stage and extraction solvents on phenolic content and antioxidant activity of three sweet cherry cultivars. Lucrari Stiintifice, seria Agronomie, 59(2), 403–408.
  35. Sadeer, N. B., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants, 9(8), 709. https://doi.org/10.3390/antiox9080709">https://doi.org/10.3390/antiox9080709
  36. Sadler, G. D. & Murphy P. A. (2010). pH and titratable acidity. In S. S. Nielsen (Ed.) Food Analysis. 4th edition (pp. 219–1238). Springer. https://doi.org/10.1007/978-1-4419-1478-1">https://doi.org/10.1007/978-1-4419-1478-1
  37. Saha, A. K., Rahman, Md. R., Shahriar, M., Saha, S. K., Al Azad, N. & Das, D. (2013). Screening of six Ayurvedic medicinal plant extracts for antioxidant and cytotoxic activity. Journal of Pharmacognosy and Phytochemistry, 2(2), 181–188.
  38. Salamon, I., Şimşek Sezer, E. N., Kryvtsova, M. & labun, P. (2021). Antiproliferative and antimicrobial activity of anthocyanins from berry fruits after their isolation and freeze-drying. Applied Science, 11(5), 2096. https://doi.org/10.3390/app11052096">https://doi.org/10.3390/app11052096
  39. Šapčanin, A., Salihović, M., Uzunović, A., Osmanović, A., Špirtović-Halilović, S., Pehlić, E. & Jančan, G. (2017). Antioxidant activity of fruits and vegetables commonly used in everyday diet in Bosnia and Herzegovina. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 49, 15–18.
  40. Skovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673">https://doi.org/10.3390/ijms161024673
  41. Sulusoglu, M. (2014). Phenolic compounds and uses in fruit growing. Turkish Journal of Agricultural and Natural Sciences, 1, 947–956. https://dergipark.org.tr/en/download/article-file/142206
  42. Tumbas, V., Čanadanović-Brunet, J., Gille, L., Đilas, S. & Ćetković, G. (2010). Superoxide anion radical scavenging activity of bilberry (Vaccinium myrtillus L.). Journal of Berry Research, 1(1), 13–23. https://doi:10.3233/BR-2010-002
  43. Valentão, P., Fernandes, E., Carvalho, F., Andrade, P. B., Seabra, R. M. & Bastos, M. L. (2002). Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorus acid. Journal of Agricultural and Food Chemistry, 50(17), 4989–4993. https://doi.org/10.1021/jf020225o">https://doi.org/10.1021/jf020225o
  44. Vujanović, M., Majkić, T., Zengin, G., Beara, I., Tomović, V., Šojić, B., Đurović, S. & Radojković, M. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10, 44805. https://doi:10.1039/d0ra09129d
  45. Vulić, J. J., Vračar, Lj. O. & Šumić, Z. M. (2008). Chemical characteristics of cultivated elderberry fruit. Acta Periodica Technologica, 39, 85–90. https://doi:10.2298/APT0839085V
  46. Wang, S. Y. & Lewers, K. S. (2007). Antioxidant capacity and flavonoid content in wild strawberries. Journal of the American Society for Horticultural Science, 132(5), 629–637. https://doi.org/10.21273/JASHS.132.5.629">https://doi.org/10.21273/JASHS.132.5.629
  47. Zhang, Y. J., Gan, R. Y., Li, S, Zhou, Y., Li, A. N., Xu, D. P. & Li, H. B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138–21156. https://doi:10.3390/molecules201219753
  48. Zhou, Y., Gao, Y. G. & Giusti, M. M. (2020). Accumulation of anthocyanins and other phytochemicals in American elderberry cultivars during fruit ripening and its impact on color expression. Plants, 9, 1721. https://doi:10.3390/plants9121721
DOI: https://doi.org/10.2478/ahr-2021-0033 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 119 - 126
Submitted on: Jul 14, 2021
Accepted on: Sep 30, 2021
Published on: Dec 2, 2021
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Radenka Kolarov, Marijana Peić Tukuljac, Aliaksandr Kolbas, Natalia Kolbas, Goran Barać, Vladislav Ognjanov, Mirjana Ljubojević, Dejan Prvulović, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.