Have a personal or library account? Click to login
Expression and biochemical significance of Piwil2 in stem cell lines Cover

Expression and biochemical significance of Piwil2 in stem cell lines

By: Dilek Kaan  
Open Access
|Apr 2022

References

  1. Dohnal V, Wu Q, Kuca K. Metabolism of aflatoxins: Key enzymes and inter individual as well as interspecies differences. Arch Toxicol. 2014; 29: 155–170.
  2. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev Biochem Mol. 1995; 30: 445–600.
  3. Caccuri AM, Giovanni A. Proton release on the binding of glutathione to alpha Mu and Delta class glutathione transferases. Biochem J. 1999; 344: 419–425.
  4. Lee HH, Schütte D, Wulf G, Füzesi L, Radzun HJ, Schweyer S, Engel W, Nayernia K. Stem-cell protein Piwil2 is widely expressed in tumours and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 2006; 15: 201–211.
  5. Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome. Genomics. 2003; 82: 323–333.
  6. Chen L, Shen R, Ye Y, Pu XA, Liu X, Duan W, Wen J, Zimmerer J, Wang Y, Liu Y, et al. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS One. 2007; 2: e293.
  7. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006; 355: 1253–1261.
  8. Unhavaithaya Y, Hao Y, Beyret E, Yin H, Miyagawa SK, Nakano T, Lin H. PIWI-interacting RNA-binding protein, is required for germline stem cell self-renewal and appears to positively regulate translation. J Biol Chem. 2009; 284: 6507–6519.
  9. Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He G, Yan Q, Ting Z, Issekutz AC, Shapiro CL, et al. Identification of Piwil2-like (PL2L) proteins that promote tumourigenesis. PLoS One. 2010; 5: e13406.
  10. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 7: 248–254.
  11. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249: 7130–7139.
  12. Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: Substrates, inhibitors, and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018; 7: 8–23.
  13. Dong SC, Sha HH, Xu YY, Hu T, Lou R, Li H, Wu J, Dan C, Freng J. Glutathione S-transferase π: A potential role in antitumour therapy. Dove Med Press. 2018; 12: 3535–3547.
  14. Mahajan S, Atkins WM. The chemistry and biology of inhibitors and prodrugs targeted to glutathione S-transferases. Cell Mol Life Sci. 2005: 62; 1221–1233.
  15. Gate L, Tew KD. Glutathione S-transferases as emerging therapeutic targets. Expert Opin Ther Targets. 2001; 5: 477–489.
  16. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005; 45: 51–88.
  17. Punganuru SR, Mostofa AG, Madala HR, Basak D, Srivenugopal KS. Potent anti-proliferative actions of a non-diuretic glucosamine derivative of ethacrynic acid. Bioorg Med Chem Lett. 2016; 26: 2829–2833.
  18. Guneidy RA, Gad AM, Zaki ER, Ibrahim FM, Shooker A. Antioxidant or pro-oxidant and glutathione transferase P1-1 inhibiting activities for Tamarindus indica seeds and their cytotoxic effect on MCF-7 cancer cell line. J Genet Eng Biotechnol. 2020; 18: 74.
  19. Aybek H, Temel Y, Ahmed BM, Ağca CA, Çiftci M. Deciphering of the effect of chemotherapeutic agents on human glutathione S-transferase enzyme and MCF-7 cell line. Protein & Pept Lett. 2020; 27: 888–894.
  20. Zeng B, Ge C, Li R, Zhang Z, Fu Q, Zhen L, Lin Z, Liu L, Xue Y, Xu Y, et al. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed Pharmacother. 2020; 121: 109562.
  21. Sanaei M, Kavaoosi F, Esmi Z. The effect of 5-aza-2′-deoxycytidine in combination to and in comparison with vorinostat on DNA methyltransferases, histone deacetylase 1, glutathione S-transferase 1 and suppressor of cytokine signaling 1 genes expression, cell growth inhibition and apoptotic induction in hepatocellular LCL-PI 11 cell line. Int J Hematol Oncol Stem Cell Res. 2020; 14: 45–55.
  22. Gao JX. Cancer stem cells: The lessons from pre-cancerous stem cells. J Cell Mol Med. 2008; 12: 67–96.
  23. Zhang D, Li D, Shen L. Exosomes derived from Piwil2-induced cancer stem cells transform fibroblasts into cancer-associated fibroblasts. Oncol Rep. 2020; 43: 1125–1132.
  24. Feng D, Yan K, Liang H, Liang J, Wang W, Yu H, Zhou Y, Zhao W, Dong Z, Ling B. CBP-mediated Wnt3a/β-catenin signaling promotes cervical oncogenesis initiated by Piwil2. Neoplasia. 2021; 23: 1–11.
  25. Zou GL, Zhang XR, Ma YL, Lu Q, Zhao R, Zh YZ, Wang YY. The role of Nrf2/PIWIL2/purine metabolism axis in controlling radiation-induced lung fibrosis. Am J Cancer Res. 2020; 10: 2752–2767.
Language: English
Page range: 97 - 103
Submitted on: Apr 20, 2021
Accepted on: Sep 23, 2021
Published on: Apr 2, 2022
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Dilek Kaan, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.