References
- Wei K, Qiu M, Zhang R, Zhou L, Zhang T, Yao M, Luo C. Single Living yEast PM Toxicity Sensor (SLEPTor) system. J Aerosol Sci. 2017; 107: 65–73.
- Roslev P, Lentz T, Hesselsoe M. Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays. Chemosphere. 2015; 120: 284–291.
- Hani U, Shivakumar HG, Vaghela R, Osmani RA, Shrivastava A. Candidiasis: A fungal infection-current challenges and progress in prevention and treatment. Infect Disord Drug Targets. 2015; 15: 42–52.
- Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance. J Hosp Infect. 2002; 50: 243–260.
- Singh A, Healey KR, Yadav P, Upadhyaya G, Sachdeva N, Sarma S, Kumar A, Tarai B, Perlin DS, Chowdhary A. Absence of azole or echinocandin resistance in Candida glabrata isolates in India despite background prevalence of strains with defects in the DNA mismatch repair pathway. Antimicrob Agents Chemother. 2018; 62: e00195–18.
- de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Groß U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M. The cell wall of the human pathogen Candida glabrata: Differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell. 2008; 7: 1951–1964.
- Fox EP, Nobile CJ. A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012; 3: 315–322.
- Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin Microbiol Infect. 2012; 18: 19–37.
- Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001; 9: 327–335.
- Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cel. Microbiol. 2004; 6: 915–926.
- Kadry AA, El-Ganiny AM, El-Baz AM. Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci. 2018; 18: 1166–1174.
- Alfonso-Gordillo G, Flores-Ortiz CM, Morales-Barrera L, Cristiani-Urbina E. Biodegradation of methyl tertiary butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor: Kinetic study, metabolite identification and toxicity bioassays. PLoS One. 2016; 11: e0167494.
- Salimi A, Vaghar-Moussavi M, Seydi E, Pourahmad J. Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. Environ Sci Pollut Res Int. 2016; 23: 8556–8564.
- Juwono H, Yamin A, Alfian R, Ni’mah YL, Harmami H. Production of liquid fuel from plastic waste with co-reactan nyamplung oil (callophyllum inophyllum) and its performance in gasoline machine by adding MTBE additive. AIP Conf Proc. 2018; 2049: 020081
- Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 1997; 65: 3529–3538.
- Modrzewska B, Kurnatowski P, Khalid K. Comparison of proteolytic activity of Candida sp. strains depending on their origin. J Mycol Med. 2016; 26: 138–147.
- de Barros PP, Freire F, Rossoni RD, Junqueira JC, Jorge AO. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene. Folia Microbiol. 2017; 62: 317–323.
- Feng W, Yang J, Wang Y, Chen J, Xi Z, Qiao Z. ERG11 mutations and up-regulation in clinical itraconazole-resistant isolates of Candida krusei. Can J Microbiol. 2016; 62: 938–943.
- Gallegos-García V, Pan SJ, Juárez-Cepeda J, Ramírez-Zavaleta CY, Martin-del-Campo MB, Martínez-Jiménez V, Castaño I, Cormack B, De Las Peñas A. A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata. Genetics. 2012; 190: 1285–1297.
- Zhu SL, Yan L, Zhang YX, Jiang ZH, Gao PH, Qiu Y, Wang L, Zhao MZ, Ni TJ, Cai Z, et al.: Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biol Pharm Bull. 2014; 37: 268–273.
- Tobal JM, da Silva Ferreina Balieiro ME. Role of carbonic anhydrases in pathogenic micro-organisms: A focus on Aspergillus fumigatus. J Med Microbiol. 2014; 63: 15–27.
- Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics. 2011; 189: 1145–1175.
- Ikezaki S., Cho T, Nagao JI, Tasaki S, Yamaguchi M, Arita-Morioka KI, Yasumatsu K, Chibana H, Ikebe T, Tanaka Y. Mild heat stress affects on the cell wall structure in Candida albicans biofilm. Med Mycol J. 2019; 60: 29–37.
- Abu El-Asrar AM, Missotten L, Geboes K. Expression of hypoxiainducible factor-1α and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. Br J Ophthalmol. 2007; 91: 822–826.
- Du H, Guan G, Xie J, Cottier F, Sun Y, Jia W, Mühlschlegel FA, Huang G. The transcription factor Flo8 mediates CO2 sensing in the human fungal pathogen Candida albicans. Mol Biol Cell. 2012; 23: 2692–2701.
- Sasani E, Khodavaisy S, Agha Kuchak Afshari S, Darabian S, Aala F, Rezaie S. Pseudohyphae formation in Candida glabrata due to CO2 exposure. Curr Med Mycol. 2016; 2: 49–52.
- Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol. 2006; 55: 1577–1581.
- Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004; 22: 189–259.
- Coelho M, Belo I, Pinheiro R, Amaral A, Mota M, Coutinho J, Ferreira E. Effect of hyperbaric stress on yeast morphology: Study by automated image analysis. Appl Microbiol Biotechnol. 2004; 66: 318–324.
- Shimoda M, Cocunubo-Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I. The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae. J Appl Microbiol. 2001; 91: 306–311.
- Tupa PR, Masuda H. Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421. J Genomics. 2018; 6: 24–29.
- Graybill JR. The long and the short of antifungal therapy. Infect Dis Clin North Am. 1988; 2: 805–825.
- Harvey RJ, Lund VJ. Biofilms and chronic rhinosinusitis: Systematic review of evidence, current concepts and directions for research. Rhinology. 2007; 45: 3–13.
- Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Bio-films of non-Candida albicans Candida species: Quantification, structure and matrix composition. Med Mycol. 2009; 47: 681–689.
- Fonseca E, Silva S, Rodrigues CF, Alves CT, Azeredo J, Henriques M. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression. Biofouling. 2014; 30: 447–457.
- Pettit RK, Repp KK, Hazen KC. Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol J. 2010; 48: 421–426.
- Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol J. 2005; 43: 285–318.
- Klis FM, De Groot P, Brul S. 13 identification, characterization, and phenotypic analysis of covalently linked cell wall proteins. Methods Microbiol. 2007; 36: 281–301.
- Newport G, Agabian N. KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem. 1997; 272: 28954–28961.
- Dabiri S, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. SAP (1-3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different Candidosis. J Pure Appl Microbiol. 2016; 10: 1891–1896.
- Lone SA, Khan S, Ahmad A. Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme. Arch Microbiol. 2020; 202: 711–726.