Have a personal or library account? Click to login

Arylesterase activity of paraoxonase 1 in patients with primary hypertension

Open Access
|Dec 2021

References

  1. Brzyżkiewicz H., Konduracka E., Gajos G., Janion M.: Incidence of chronic heart failure with preserved left ventricular ejection fraction in patients with hypertension and isolated mild diastolic dysfunction. Pol. Arch. Med. Wewn., 2016; 126: 12–18.
  2. Czarnecka D., Jankowski P., Kopeć G., Pająk A., Podolec J., Zdrojewski T., Drygas W., Małecki M., Nowicka G., Windak A., et al.: Polish Forum for Prevention Guidelines on Hypertension: Update 2017. Kardiol. Pol., 2017; 75: 282–285.
  3. Eren E., Yilmaz N., Aydin O., Ellidağ H.Y.: Anticipatory role of high density lipoprotein and endothelial dysfunction: An overview. Open. Biochem. J., 2014; 8: 100–106.
  4. Banaszewska A., Baszczuk A., Kopczyński Z., Thielemann A., Kopczyński P.: The role of paraoxonase 1 (EC 3.1.8.1) in the development of atherosclerosis. Post. Biol. Kom., 2014; 41: 429–444.
  5. Aviram M., Rosenblat M., Bisgaier C.L., Newton R.S., Primo-Parrno S.L., La Du B.N.: Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest., 1998; 101: 1581–1590.
  6. Hine D., Mackness B., Mackness M.: Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation. IUBMB Life, 2012; 64: 157–161.
  7. Shih D.M., Gu L., Xia Y.R., Navab M., Li W.F., Hama S., Castellani L.W., Furlong C.E., Costa L.G., Fogelman A.M., Lusis A.J.: Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature, 1998; 394: 284–287.
  8. Tavori M., Aviram S., Khatib S., Musa R., Nitecki S., Hoffman A., Vaya J.: Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects. Free Radic. Biol. Med., 2009; 46: 607–615.
  9. Shunmoogam N., Naidoo P., Chilton R.: Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag., 2018; 14: 137-143.
  10. Zhao Y., Ma Y., Fang Y., Liu L., Wu S., Fu D., Wang X.: Association between PON1 activity and coronary heart disease risk: A meta-analysis based on 43 studies. Mol. Genet. Metab., 2012; 105: 141–148.
  11. Kunutsor S.K., Bakker S.J., James R.W., Dullaart R.P.: Serum paraoxonase-1 activity and risk of incident cardiovascular disease: The PREVEND study and meta-analysis of prospective population studies. Atherosclerosis, 2016; 245: 143–154.
  12. Zhou C., Cao J., Shang L., Tong C., Hu H., Wang H., Fan D., Yu H.: Reduced paraoxonase 1 activity as a marker for severe coronary artery disease. Dis. Markers, 2013; 35: 97–103.
  13. Michalak S., Ambrosius W., Wysocka E., Dziarmaga M., Juszkat R., Wykretowicz A., Kozubski W.: The early effect of carotid artery stenting on antioxidant capacity and oxidative stress in patients with carotid artery stenosis. Oxid. Med. Cell. Longev., 2016; 2016: 1789596.
  14. Chen X., Wu Y., Liu L., Su Y., Peng Y., Jiang L., Liu X., Huang D.: Relationship between high density lipoprotein antioxidant activity and carotid arterial intima-media thickness in patients with essential hypertension. Clin. Exp. Hypertens., 2010; 32: 13–20.
  15. Besler C., Heinrich K., Rohrer L., Doerries C., Riwanto M., Shih D.M., Chroni A., Yonekawa K., Stein S., Schaefer N., et al.: Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest., 2011; 121: 2693–2708.
  16. Xu S., Ogura S., Chen J., Little P.J., Moss J., Liu P.: LOX-1 in atherosclerosis: Biological functions and pharmacological modifiers. Cell. Mol. Life Sci., 2013; 70: 2859–2872.
  17. Charakida M., Besler C., Batuca J.R., Sangle S., Marques S., Sousa M., Wang G., Touisoulis D., Alves J.D., Loukogeorgakis S.P., et al.: Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA, 2009; 302: 1210–1217.
  18. Adams V., Besler C., Fischer T., Riwanto M., Noack F., Höllriegel R., Oberbach A., Jehmlich N., Völker U., Winzer E.B., et al.: Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ. Res., 2013; 113: 1345–1355.
  19. Ayashi S., Assareh A.R., Jalali M.T., Olapour S., Yaghooti H.: Role of antioxidant property of carvedilol in mild to moderate hypertensive patients: A prospective open-label study. Indian. J. Pharmacol., 2016; 48: 372–376.
  20. Fridman O., Gariglio L., Riviere S., Porcile R., Fuchs A., Potenzoni M.: Paraoxonase 1 gene polymorphisms and enzyme activities in coronary artery disease and its relationship to serum lipids and glycemia. Arch. Cardiol. Mex., 2016; 86: 350–357.
  21. Rybka J., Kupczyk D., Kędziora-Kornatowska K., Motyl J., Czuczejko J., Szewczyk-Golec K., Kozakiewicz M., Pawluk H., Carvalho L.A., Kędziora J.: Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc. Toxicol., 2011; 11: 1–9.
  22. Mineo C., Shaul P.W.: PON-dering differences in HDL function in coronary artery disease. J. Clin. Invest., 2011; 121: 2545–2548.
  23. Rahmani M., Raiszadeh F., Allahverdian S., Kiaii S., Navab M., Azizi F.: Coronary artery disease is associated with the ratio of apolipoprotein A-I/B and serum concentration of apolipoprotein B, but not with paraoxonase enzyme activity in Iranian subjects. Atherosclerosis, 2002; 162: 381–389.
  24. Göçmen A.Y., Gümüşlü S., Semiz E.: Association between paraoxonase-1 activity and lipid peroxidation indicator levels in people living in the Antalya region with angiographically documented coronary artery disease. Clin. Cardiol., 2004; 27: 426–430.
  25. Shekhanawar M., Shekhanawar S.M., Krisnaswamy D., Indumati V., Satishkumar D., Vijay V., Rajeshwari T., Amareshwar M.: The role of “paraoxonase-1 activity” as an antioxidant in coronary artery diseases. J. Clin. Diagn. Res., 2013; 7: 1284–1287.
  26. Yan L.R., Wang D.X., Liu H., Zhang X.X., Zhao H., Hua L., Xu P., Li Y.S.: A pro-atherogenic HDL profile in coronary heart disease patients: An iTRAQ labelling-based proteomic approach. PLoS One, 2014; 9: e98368.
  27. Alaminos-Castillo M.Á., Ho-Pagaro A., García-Serrano S., Santiago-Fernandez C., Rodríguez-Pacheco F., Garrido-Sanchez L., Rodriguez C., Valdes S., Gonzalo M., Moreno-Ruiz F.J., et al.: Increased PON lactonase activity in morbidly obese patients is associated with impaired lipid profile. Int. J. Clin. Pract., 2019; 73: e13315.
  28. Aslan M., Horoz M., Sabuncu T., Celik H., Selek S.: Serum paraoxonase enzyme activity and oxidative stress in obese subjects. Pol. Arch. Med. Wewn., 2011; 121: 181–186.
  29. van Himbergen T.M., Roest M., de Graaf J., Jansen E.H., Hattori H., Kastelein J.J., Voorbij H.A., Stalenhoef A.F., van Tits L.J.: Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia. J. Lipid Res., 2005; 46: 445-451.
  30. Daly C., Fitzgerald A.P., O’Callaghan P., Collins P., Cooney M.T., Graham I.M., COMAC Group.: Homocysteine increases the risk associate with hyperlipidaemia. Eur. J. Cardiovasc. Prev. Rehabil., 2009; 16: 150–155.
  31. Guéant-Rodriguez R.M., Spada R., Moreno-Garcia M., Anello G., Bosco P., Lagrost L., Romano A., Elia M., Guéant J.L.: Homocysteine is a determinant of ApoA-I and both are associated with ankle brachial index, in an ambulatory elderly population. Atherosclerosis, 2011; 214: 480–485.
  32. Baszczuk A., Musialik K., Kopczyński J., Thielemann A., Kopczyński Z., Kęsy L., Dopierała G.: Hyperhomocysteinemia, lipid and lipoprotein disturbances in patients with primary hypertension. Adv. Med. Sci., 2014; 59: 68–73.
  33. Ferretti G., Bacchetti T., Marotti E., Curatola G.: Effect of homocysteinylation on human high-density lipoproteins: A correlation with paraoxonase activity. Metabolism, 2003; 52: 146–151.
  34. Liao D., Tan H., Hui R.,, Li Z., Jiang X., Gaubatz J., Yang F., Durante W., Chan L., Schafer A.I., et al.: Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I protein synthesis and enhancing HDL cholesterol clearance. Circ. Res., 2006; 99: 598–606.
  35. Perła-Kaján J., Jakubowski H.: Paraoxonase 1 and homocysteine metabolism. Amino Acids, 2012; 43: 1405–1417.
  36. Locsey L., Seres I., Sztanek F., Harangi M., Padra J., Kovacs D., Fedor R., Asztalos L., Paragh G.: Relationship between serum paraoxonase and homocysteine thiolactonase activity, adipokines, and asymmetric dimethyl arginine concentrations in renal transplant patients. Transplant. Proc., 2013; 45: 3685–3687.
  37. Karikas G.A., Kriebardis A., Samara I., Schulpis K., Papachristodoulou M., Fytou-Pallikari A.: Serum homocysteine levels and paraoxonase 1 activity in preschool aged children in Greece. Clin. Chem. Lab. Med., 2006; 44: 623–627.
  38. Holven K.B., Aukrust P., Retterstøl K., Otterdal K., Bjerkeli V., Ose L., Nenseter M.S., Halvorsen B.: The antiatherogenic function of HDL is impaired in hyperhomocysteinemic subjects. J. Nutr., 2008; 138: 2070–2075.
  39. Tang W.H., Hartiala J., Fan Y., Wu Y., Stewart A.F., Erdmann J., Kathiresan S., CARDIoGRAM Consortium, Roberts R., McPherson R., et al.: Clinical and genetic association of serum paraoxonase and arylesterase activities with cardiovascular risk. Arterioscler. Thromb. Vasc. Biol., 2012; 32: 2803–2812.
  40. Abelló D., Sancho E., Camps J., Joven J.: Exploring the role of paraoxonases in the pathogenesis of coronary artery disease: A systematic review. Int. J. Mol. Sci., 2014; 15: 20997–21010.
Language: English
Page range: 859 - 867
Submitted on: Jan 12, 2020
Accepted on: Aug 17, 2021
Published on: Dec 7, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Aleksandra Baszczuk, Ewa Wysocka, Alicja Płóciniczak, Anna Thielemann, Anna Dżumak, Karolina Hoffmann, Sławomir Michalak, Wiesław Bryl, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.