Have a personal or library account? Click to login

Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji

Open Access
|Nov 2021

References

  1. Cani P.D.: Human gut microbiome: Hopes, threats and promises. Gut, 2018; 67: 1716-1725
  2. Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.C., Charles T., Chen X., Cocolin L., Eversole K., Corral G.H. i wsp.: Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 2020; 8: 103
  3. Sender R., Fuchs S., Milo R.: Revised estimates for the number of human and bacteria cells in the body. PLoS Biol, 2016; 14: e1002533
  4. Dominguez-Bello M.G., Godoy-Vitorino F., Knight R., Blaser M.J.: Role of the microbiome in human development. Gut, 2019; 68: 1108-1114
  5. Gomez de Agüero M., Ganal-Vonarburg S.C., Fuhrer T., Rupp S., Uchimura Y., Li H., Steinert A., Heikenwalder M., Hapfelmeier S., Sauer U. i wsp.: The maternal microbiota drives early postnatal innate immune development. Science, 2016; 351: 1296-1302
  6. Koren O., Goodrich J.K., Cullender T.C., Spor A, Laitinen K., Bäckhed H.K., Gonzalez A., Werner J.J., Angenent L.T., Knight R. i wsp.: Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 2012; 150: 470-480
  7. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., Rudensky A.Y.: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013; 504: 451-455
  8. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A. i wsp.: Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014; 505: 559-563
  9. Chang C.J., Lin T.L., Tsai Y.L., Wu T.R., Lai W.F., Lu C.C., Lai H.C.: Next generation probiotics in disease amelioration. J. Food Drug Anal., 2019; 27: 615-622
  10. Martín R., Langella P.: Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol., 2019; 10: 1047
  11. Naito Y., Uchiyama K., Takagi T.: A next-generation beneficial microbe: Akkermansia muciniphila. J. Clin. Biochem. Nutr., 2018; 63: 33-35
  12. Zhang T., Li Q., Cheng L., Buch H., Zhang F.: Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol., 2019; 12:1109-1125
  13. Gupta R.S., Bhandari V., Naushad H.S.: Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of bacteria provide insights into their evolutionary relationships. Front. Microbiol., 2012; 3: 327
  14. Derrien M., van Passel M.W., van de Bovenkamp J.H., Schipper R.G., de Vos W.M., Dekker J.: Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 2010; 1: 254-268
  15. Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M.: Akker-mansia muciniphila gen. nov., sp. nov., a human intestinal mucindegrading bacterium. Int. J. Syst. Evol. Microbiol., 2004; 54: 1469-1476
  16. NCBI Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=74201&lvl=6&lin=f&-keep=1&srchmode=1&unlock (25.11.19)
  17. Geerlings S.Y., Kostopoulos I., de Vos W.M., Belzer C.: Akker-mansia muciniphila in the human gastrointestinal tract: When, where, and how? Microorganisms, 2018; 6: 75
  18. Ottman N., Geerlings S.Y., Aalvink S., de Vos W.M., Belzer C.: Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol., 2017; 31: 637-642
  19. Ottman N., Davids M., Suarez-Diez M., Boeren S., Schaap P.J., Martins Dos Santos V.A., Smidt H., Belzer C., de Vos W.M.: Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol., 2017; 83: e01014-17
  20. Collado M.C., Derrien M., Isolauri E., de Vos W.M., Salminen S.: Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol., 2007; 73: 7767-7770
  21. Cozzolino A., Vergalito F., Tremonte P., Iorizzo M., Lombardi S. J., Sorrentino E., Luongo D., Coppola R., Di Marco R., Succi M.: Preliminary evaluation of the safety and probiotic potential of Ak-kermansia muciniphila DSM 22959 in comparison with Lactobacil-lus rhamnosus GG. Microorganisms, 2020; 8: 189
  22. Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M. i wsp.: Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med., 2019; 25: 1096-1103
  23. Johansson M.E., Larsson J.M., Hansson G.C.: The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA, 2011; 108: 4659-4665
  24. Lopez-Siles M., Enrich-Capó N., Aldeguer X., Sabat-Mir M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M.: Alterations in the abundance and co-occurrence of Akkermansia muciniph-ila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front. Cell. Infect. Microbiol., 2018; 8: 281
  25. Zhang T., Li P. Wu X., Lu G., Marcella C., Ji X., Ji G., Zhang F.: Alterations of Akkermansia muciniphila in the inflammatory bowel disease patients with washed microbiota transplantation. Appl. Microbiol. Biotechnol., 2020; 104: 10203-10215
  26. Nava G.M., Carbonero F., Croix J.A., Greenberg E., Gaskins H.R.: Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J., 2012; 6: 57-70
  27. Grander C., Adolph T.E., Wieser V., Low, P., Wrzosek L., Gyongyosi B., Ward D.V., Grabherr F., Gerner R.R., Pfister A. i wsp.: Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut, 2018; 67: 891-901
  28. Hänninen A., Toivonen R., Pöysti S., Belzer C., Plovier H., Ouwerkerk J.P., Emani R., Cani P.D., De Vos W.M.: Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut, 2018; 67: 1445-1453
  29. Viggiano D., Ianiro G., Vanella G., Bibbò S., Bruno G., Simeone G., Mele G.: Gut barrier in health and disease: Focus on childhood. Eur. Rev. Med. Pharmacol. Sci., 2015; 19: 1077-1085
  30. Hamada H., Hiroi T., Nishiyama Y., Takahashi H., Masunaga Y., Hachimura S., Kaminogawa S., Takahashi-Iwanaga H., Iwanaga T., Kiyono H. i wsp.: Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol., 2002; 168: 57-64
  31. Jung C., Hugot J.P., Barreau F.: Peyer’s patches: The immune sensors of the intestine. Int. J. Inflam., 2010; 2010: 823710
  32. Gomes A.C., Hoffmann C., Mota J.F.: The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018; 9: 308-325
  33. UniProtKB - P51684 (CCR6_HUMAN). https://www.uniprot.org/uniprot/P51684 (19.03.2020)
  34. Lin Y.L., Ip P.P., Liao F.: CCR6 deficiency impairs IgA production and dysregulates antimicrobial peptide production, altering the intestinal flora. Front. Immunol., 2017; 8: 805
  35. Mazzurana L., Rao A., Van Acker A., Mjösberg J.: The roles for innate lymphoid cells in the human immune system. Semin. Immunopathol., 2018; 40: 407-419
  36. UniProtKB - Q6UW15 (REG3G_HUMAN). https://www.uniprot.org/uniprot/Q6UW15 (19.03.2020)
  37. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M. i wsp.: Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013; 110: 9066-9071
  38. Pourahmad J., Salimi A.: Isolated human peripheral blood mononuclear cell (PBMC), a cost effective tool for predicting immunosuppressive effects of drugs and xenobiotics. Iran. J. Pharm. Res., 2015; 14: 979
  39. Ottman N., Reunanen J., Meijerink M., Pietilä T.E., Kainulainen V., Klievink J., Huuskonen L., Aalvink S., Skurnik M., Boeren S. i wsp.: Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One, 2017; 12: e0173004
  40. Hiippala K., Jouhten H., Ronkainen A., Hartikainen A., Kainulainen V., Jalanka J., Satokari R.: The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients, 2018; 10: 988
  41. Reunanen J., Kainulainen V., Huuskonen L., Ottman N., Belzer C., Huhtinen H., de Vos W.M., Satokari R.: Akkermansia mucin-iphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol., 2015; 81: 36553662
  42. Delgado S., Sánchez B., Margolles A., Ruas-Madiedo P., Ruiz L.: Molecules produced by probiotics and intestinal microorganisms with immunomodulatory activity. Nutrients, 2020; 12: 391
  43. Hills R.D.Jr., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R.: Gut microbiome: Profound implications for diet and disease. Nutrients, 2019; 11: 1613
  44. Kimura I., Inoue D., Hirano K., Tsujimoto G.: The SCFA receptor GPR43 and energy metabolism. Front. Endocrinol., 2014; 5: 85
  45. Andersen A., Lund A., Knop F.K., Vilsbøll T.: Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol., 2018; 14: 390-403
  46. Vásquez-Garibay E., Larrosa-Haro A., Guzmán-Mercado E., Muñoz-Esparza N., García-Arellano S., Muñoz-Valle F., Romero-Velarde E.: Appetite-regulating hormones and anthropometric indicators of infants according to the type of feeding. Food Sci. Nutr., 2020; 8: 993-1000
  47. Chang P.V., Hao L., Offermanns S., Medzhitov R.: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA, 2014; 111: 2247-2252
  48. Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X.: Butyrate: A double-edged sword for health? Adv. Nutr., 2018; 9: 21-29
  49. Eckschlager T., Plch J., Stiborova M., Hrabeta J.: Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017; 18: 1414
  50. Piekarzewska M., Zajenkowska-Kozłowska A.: Stan zdrowia ludności. W: Stan zdrowia ludności Polski w 2014 r., red.: M. Piekarzewska, A. Zajenkowska-Kozłowska. Główny Urząd Statystyczny, Warszawa, 2016, 76
  51. Macchione I.G., Lopetuso L.R., Ianiro G., Napoli M., Gibiino G., Rizzatti G., Petito V., Gasbarrini A., Scaldaferri F.: Akkermansia muciniphila: Key player in metabolic and gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci., 2019; 23: 8075-8083
  52. Jayachandran M., Chung S.S., Xu B.: A critical review of the relationship between dietary components, the gut microbe Akker-mansia muciniphila, and human health. Crit. Rev. Food Sci. Nutr., 2020; 60: 2265-2276
  53. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I.: Microbial ecology: Human gut microbes associated with obesity. Nature, 2006; 444: 1022-1023
  54. Shin J., Noh J.R., Chang D.H., Kim Y.H., Kim M.H., Lee E.S., Cho S., Ku B.J., Rhee M.S., Kim B.C. i wsp.: Elucidation of Akker-mansia muciniphila probiotic traits driven by mucin depletion. Front. Microbiol., 2019; 10: 1137
  55. Pascale A., Marchesi N., Govoni S., Coppola A., Gazzaruso C.: The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases. Curr. Opin. Pharmacol., 2019; 49: 1-5
  56. Kim M.H., Jee J.H., Park S., Lee M.S., Kim K.W., Lee M.K.: Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J. Endocrinol., 2014; 220: 117-128
  57. Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M., Olsson L.M., Serino M., Planas-Fè-lix M. i wsp.: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 2017; 23: 850-858
  58. Ramos G.P., Papadakis K.A.: Mechanisms of disease: Inflammatory bowel diseases. Mayo Clin. Proc., 2019; 94: 155-165
  59. Hall A.B., Yassour M., Sauk J., Garner A., Jiang X., Arthur T., Lagoudas G.K., Vatanen T., Fornelos N., Wilson R. i wsp.: A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med., 2017; 9: 103
  60. Kump P., Wurm P., Gröchenig H.P., Wenzl H., Petritsch W., Halwachs B., Wagner M., Stadlbauer V., Eherer A., Hoffmann K.M. i wsp.: The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment. Pharmacol. Ther., 2018; 47: 67-77
  61. Xu Y., Wang N., Tan H.Y., Li S., Zhang C., Feng Y.: Function of Akkermansia muciniphila in obesity: Interactions with lipid metabolism, immune response and gut systems. Front. Microbiol., 2020; 11: 219
  62. Aron-Wisnewsky J., Gaborit B., Dutour A., Clement K.: Gut microbiota and non-alcoholic fatty liver disease: New insights. Clin. Microbiol. Infect., 2013; 19: 338-348
  63. Fukui H.: Gut microbiota and host reaction in liver diseases. Microorganisms, 2015; 3: 759-791
  64. Van Best N., Jansen P.L., Rensen S.S.: The gut microbiota of nonalcoholic fatty liver disease: Current methods and their interpretation. Hepatol. Int., 2015; 9: 406-415
  65. Szewczyk A., Witecka A., Kiersztan A.: The role of gut microbiota in the pathogenesis of neuropsychiatric and neurodegenerative diseases. Postępy Hig. Med. Dośw., 2019; 73: 865-886
  66. Jones L.A., Sun E.W., Martin A.M., Keating D.J.: The everchanging roles of serotonin. Int. J. Biochem. Cell Biol., 2020; 125: 105776
  67. Yaghoubfar R., Behrouzi A., Ashrafian F., Shahryari A., Moradi H.R., Choopani S., Hadifar S., Vaziri F., Nojoumi S.A., Fateh A. i wsp.: Modulation of serotonin signaling/metabolism by Akker-mansia muciniphila and its extracellular vesicles through the gutbrain axis in mice. Sci. Rep., 2020; 10: 22119
  68. Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E.: Host- and microbiota-derived extracellular vesicles, immune function, and disease development. Int. J. Mol. Sci. 2019; 21: 107
  69. Han E.C, Choi S.Y., Lee Y., Park J.W., Hong S.H., Lee H.J.: Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J., 2019; 33: 13412-13422
  70. Olson C.A., Vuong H.E., Yano J.M., Liang Q.Y., Nusbaum D.J., Hsiao E.Y.: The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 2018; 173: 1728-1741.e13
  71. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S. i wsp.: Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 2017; 5: 10
  72. Kraeuter A.K., Guest P.C., Sarnyai Z.: The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol. Biol., 2019; 1916: 105-111
  73. Ou Z., Deng L., Lu Z., Wu F., Liu W., Huang D., Peng Y.: Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes, 2020; 10: 12
  74. Michalovich D., Rodriguez-Perez N., Smolinska S., Pirozynski M., Mayhew D., Uddin S., Van Horn S., Sokolowska M., Altunbulakli C., Eljaszewicz A. i wsp.: Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat. Commun., 2019; 10: 5711
  75. Farrokhi A.S., Darabi N., Yousefi B., Askandar R.H., Shariati M., Eslami M.: Is it true that gut microbiota is considered as panacea in cancer therapy? J. Cell. Physiol., 2019; 234: 14941-14950
  76. Routy B., Le Chatelier E., Derosa L., Duong, C.P., Alou, M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P. i wsp.: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018; 359: 91-97
Language: English
Page range: 724 - 748
Submitted on: Oct 8, 2020
Accepted on: Aug 9, 2021
Published on: Nov 29, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Emilia Markowska, Anna Kiersztan, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.