Have a personal or library account? Click to login

Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals

Open Access
|Dec 2021

References

  1. Sophia Fox A.J., Bedi A., Rodeo S.A.: The basic science of articular cartilage: Structure, composition, and function. Sports Health, 2009; 1: 461–468.
  2. Gentili C., Cancedda R.: Cartilage and bone extracellular matrix. Curr. Pharm. Des., 2009; 15: 1334–1348.
  3. Meier H., Springsklee M., Wildfeuer A.: Penetration of ampicillin and sulbactam into human costal cartilage. Infection, 1994; 22: 152–155.
  4. Bolton S.N., Whitehead M.P., Dudhia J., Baldwin T.C., Sutton R.: Investigating the postmortem molecular biology of cartilage and its potential forensic applications. J. Forensic Sci., 2015; 60: 1061–1067.
  5. Meng H., Zhang M., Xiao B., Chen X., Yan J., Zhao Z., Ma K., Shen Y., Xie J.: Forensic age estimation based on the pigmentation in the costal cartilage from human mortal remains. Leg. Med., 2019; 40: 32–36.
  6. Siriboonpiputtana T., Rinthachai T., Shotivaranon J., Peonim V., Rerkamnuaychoke B.: Forensic genetic analysis of bone remain samples. Forensic Sci. Int., 2018; 284: 167–175
  7. Malaver P.C., Yunis J.J.: Different dental tissues as source of DNA for human identification in forensic cases. Croat. Med. J., 2003; 44: 306–309.
  8. Gaudio D., Fernandes D.M., Schmidt R., Cheronet O., Mazzarelli D., Mattia M., O’Keeffe T., Feeney R.N., Cattaneo C., Pinhasi R.: Genome-wide DNA from degraded petrous bones and the assessment of sex and probable geographic origins of forensics cases. Sci. Rep., 2019; 9: 8226.
  9. Vanek D., Budowle B., Dubska-Votrubova J., Ambers A., Frolik J., Pospisek M., Al Affefi A.A., Al Hosani K.I., Allen M., Al Naimi S.K., et al.: Results of a collaborative study on DNA identification of aged bone samples. Croat. Med. J., 2017; 58: 203–213.
  10. Rohland N., Glocke I., Aximu-Petri A., Meyer M.: Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc., 2018; 13: 2447–2461.
  11. Edson S.M., McMahon T.P.: Extraction of DNA from skeletal remains. Methods Mol. Biol., 2016; 1420: 69–87.
  12. Ossowski A., Kuś M., Brzeziński P., Prüffer J., Piątek J., Zielińska G., Bykowska M., Jałowińska K., Torgaszev A., Skoryukov A., et al.: Example of human individual identification from World War II gravesite. Forensic Sci. Int., 2013; 233: 179–192.
  13. Damgaard P.B., Margaryan A., Schroeder H., Orlando L., Willerslev E., Allentoft M.E.: Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep., 2015; 5: 11184.
  14. Jakubowska J., Maciejewska A., Pawłowski R.: Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int. J. Legal Med., 2012; 126: 173–178.
  15. Emmons A.L., Davoren J., DeBruyn J.M., Mundorff A.Z.: Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci. Int. Genet., 2020; 44: 102193.
  16. Gino S., Robino C., Bonanno E., Torre C.: DNA typing from epiglottic cartilage of exhumed bodies. Int. Congr. Ser., 2003; 1239: 885–887.
  17. Zhou H., Wu D., Chen R., Xu Y., Xia Z., Guo Y., Zhang F., Zheng W.: Developmental validation of a forensic rapid DNA-STR kit: Expressmarker 16. Forensic Sci. Int. Genet., 2014; 11: 31–38.
  18. Ferreira S.T., Paula K.A., Nogueira R.F., Oliveira E.S., Moraes A.V.: A comparative study between muscle, cartilage and swab from inside the urinary bladder samples for DNA typing of severely burnt bodies in disaster victim identification (DVI). Forensic Sci. Int: Genet. Suppl. Series, 2015; 5: e617–e618.
  19. Ferreira S.T., Garrido R.G., Paula K.A., Nogueira R.C., Oliveira E.S., Moraes A.V. Cartilage and phalanges from hallux: Alternative sources of samples for DNA typing in disaster victim identification (DVI). A comparative study. Forensic Sci. Int: Genet. Suppl. Series, 2013; 4: e366–e367.
  20. Gao Y., Liu S., Huang J., Guo W., Chen J., Zhang L., Zhao B., Peng J., Wang A., Wang Y., et al.: The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed. Res, Int., 2014; 2014: 648459.
  21. Forman J.L., Kent R.W.: The effect of calcification on the structural mechanics of the costal cartilage. Comput. Methods Biomech. Biomed. Engin., 2014; 17: 94–107.
  22. Sunwoo W.S., Choi H.G., Kim D.W., Jin H.R.: Characteristics of rib cartilage calcification in Asian patients. JAMA Facial Plast. Surg., 2014; 16: 102–106.
  23. Ossowski A., Diepenbroek M., Kupiec T., Bykowska-Witowska M., Zielińska G., Dembińska T., Ciechanowicz A.: Genetic identification of communist crimes’ victims (1944–1956) based on the analysis of one of many mass graves discovered on the Powazki Military Cemetery in Warsaw, Poland. J. Forensic Sci., 2016; 61: 1450–1455.
  24. Aoyama H., Mizutani–Koseki S., Koseki H.: Three developmental compartments involved in rib formation. Int. J. Dev. Biol., 2005; 49: 325–333.
  25. Seo Y., Uchiyama D., Kuroki K., Kishida T.: STR and mitochondrial DNA SNP typing of a bone marrow transplant recipient after death in a fire. Leg. Med., 2012; 14: 331–335.
Language: English
Page range: 852 - 858
Submitted on: Dec 7, 2020
Accepted on: Jun 24, 2021
Published on: Dec 4, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Marcin Tomsia, Kornelia Droździok, Gulnaz T. Javan, Rafał Skowronek, Michał Szczepański, Elżbieta Chełmecka, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.