Have a personal or library account? Click to login
Wpływ suplementacji diety selenem na przebieg autoimmunologicznego zapalenia tarczycy – przegląd badań klinicznych przeprowadzonych w populacji europejskiej
Caturegli P., De Remigis A., Chuang K., Dembele M., Iwama A., Iwama S.: Hashimoto’s thyroiditis: Celebrating the centennial through the lens of the Johns Hopkins Hospital surgical pathology records. Thyroid, 2013; 23: 142-150
Rasmussen L.B., Schomburg L., Köhrle J., Pedersen I.B., Hollenbach B., Hög A., Ovesen L., Perrild H., Laurberg P.: Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol., 2011; 164: 585-590
Duntas L.H., Mantzou E., Koutras D.A.: Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur. J. Endocrinol., 2003; 148: 389-393
Turker O., Kumanlioglu K., Karapolat I., Dogan I.: Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J. Endocrinol., 2006; 190: 151-156
Karanikas G., Schuetz M., Kontur S., Duan H., Kommata S., Schoen R., Antoni A., Kletter K., Dudczak R., Willheim M.: No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid, 2008; 18: 7-12
Nacamulli D., Mian C., Petricca D., Lazzarotto F., Barollo S., Pozza D., Masiero S., Faggian D., Plebani M., Girelli M.E., Mantero F., Betterle C.: Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin. Endocrinol., 2010; 73: 535-539
Krysiak R., Okopien B.: The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab., 2011; 96: 2206-2215
Esposito D., Rotondi M., Accardo G., Vallone G., Conzo G., Docimo G., Selvaggi F., Cappelli C., Chiovato L., Giugliano D., Pasquali D.: Influence of short-term selenium supplementation on the natural course of Hashimoto’s thyroiditis: Clinical results of a blinded placebo-controlled randomized prospective trial. J. Endocrinol. Invest., 2017; 40: 83-89
Pirola I., Rotondi M., Cristiano A., Maffezzoni F., Pasquali D., Marini F., Coperchini F., Paganelli M., Apostoli P., Chiovato L. i wsp.: Selenium supplementation in patients with subclinical hypothyroidism affected by autoimmune thyroiditis: Results of the SETI study. Endocrinol. Diabetes Nutr., 2020; 67: 28-35
Krohn K., Maier J., Paschke R.: Mechanisms of disease: Hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat. Clin. Pract. Endocrinol. Metab., 2007; 3: 713-720
Hendriksen M.A., van Raaij J.M., Geleijnse J.M., van den Hooven C.W., Ocké M.C., van der A D.: Monitoring salt and iodine intakes in Dutch adults between 2006 and 2010 using 24 h urinary sodium and iodine excretions. Public Health Nutr., 2014; 17: 1431-1438
Karunasinghe N., Han D.Y., Zhu S., Yu J., Lange K., Duan H., Medhora R., Singh N., Kan J., Alzaher W., Chen B., Ko S., Triggs C.M., Ferguson L.R.: Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: Relationship to markers of oxidative stress in men from Auckland, New Zealand. Genes Nutr., 2012; 7: 179-190
Jablonska E., Gromadzinska J., Reszka E., Wasowicz W., Sobala W., Szeszenia-Dabrowska N., Boffetta P.: Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur. J. Nutr., 2009; 48: 383-386
de Farias C.R., Cardoso B.R., de Oliveira G.M., de Mello Guazzelli I.C., Catarino R.M., Chammas M.C., Cozzolino S.M., Knobel M.: A randomized-controlled, double-blind study of the impact of selenium supplementation on thyroid autoimmunity and inflammation with focus on the GPx1 genotypes. J. Endocrinol. Invest., 2015; 38: 1065-1074
Mezosi E., Wang S.H., Utsugi S., Bajnok L., Bretz J.D., Gauger P.G., Thompson N.W., Baker J.R.Jr.: Interleukin-1β and tumor necrosis factor (TNF)-α sensitize human thyroid epithelial cells to TNF-related apoptosis-inducing ligand-induced apoptosis through increases in procaspase-7 and bid, and the down-regulation of p44/42 mitogen-activated protein kinase activity. J. Clin. Endocrinol. Metab., 2004; 89: 250-257
Wang S.H., Van Antwerp M., Kuick R., Gauger P.G., Doherty G.M., Fan Y.Y., Baker J.R.Jr.: Microarray analysis of cytokine activation of apoptosis pathways in the thyroid. Endocrinology, 2007; 148: 4844-4852
Antonelli A., Ferrari S.M., Giuggioli D., Ferrannini E., Ferri C., Fallahi P.: Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev., 2014; 13: 272-280
Santos L.R., Durães C., Mendes A., Prazeres H., Alvelos M.I., Moreira C.S., Canedo P., Esteves C., Neves C., Carvalho D., Sobrinho-Simões M., Soares P.: A polymorphism in the promoter region of the selenoprotein Sgene (SEPS1) contributes to Hashimoto’s thyroiditis susceptibility. J. Clin. Endocrinol. Metab., 2014; 99: E719-E723
Wasniewska M., Vigone M.C., Cappa M., Aversa T., Rubino M., De Luca F., Study Group for Thyroid diseases of Italian Society for Pediatric Endocrinology: Acute suppurative thyroiditis in childhood: Relative frequency among thyroid inflammatory diseases. J. Endocrinol. Invest., 2007; 30: 346-347
De Luca F., Santucci S., Corica D., Pitrolo E., Romeo M., Aversa T.: Hashimoto’s thyroiditis in childhood: Presentation modes and evolution over time. Ital. J. Pediatr., 2013; 39: 8
Bonfig W., Gärtner R., Schmidt H.: Selenium supplementation does not decrease thyroid peroxidase antibody concentration in children and adolescents with autoimmune thyroiditis. Sci. World J., 2010; 10: 990-996
Nourbakhsh M., Ahmadpour F., Chahardoli B., Malekpour-Dehkordi Z., Nourbakhsh M., Hosseini-Fard S.R., Doustimotlagh A., Golestani A., Razzaghy-Azar M.: Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto’s thyroiditis and hypothyroidism. J. Trace Elem. Med. Biol., 2016; 34: 10-14
Korevaar T.I., Schalekamp-Timmermans S., de Rijke Y.B., Visser W.E., Visser W., de Muinck Keizer-Schrama S.M., Hofman A., Ross H.A., Hooijkaas H., Tiemeier H., Bongers-Schokking J.J., Jaddoe V.W., Visser T.J., Steegers E.A., Medici M., Peeters R.P.: Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: The generation R study. J. Clin. Endocrinol. Metab., 2013; 98: 4382-4390
Thangaratinam S., Tan A., Knox E., Kilby M.D., Franklyn J., Coomarasamy A.: Association between thyroid autoantibodies and miscarriage and preterm birth: Meta-analysis of evidence. BMJ, 2011; 342: d2616
Negro R., Greco G., Mangieri T., Pezzarossa A., Dazzi D., Hassan H.: The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J. Clin. Endocrinol. Metab., 2007; 92: 1263-1268
Mao J., Pop V.J., Bath S.C., Vader H.L., Redman C.W., Rayman M.P.: Effect of low‑dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild‑to‑moderate iodine deficiency. Eur. J. Nutr., 2016; 55: 55-61
Karanikas G., Schuetz M., Wahl K., Paul M., Kontur S., Pietschmann P., Kletter K., Dudczak R., Willheim M.: Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto’s thyroiditis. Clin. Endocrinol., 2005; 63: 191-196
Pállinger E., Csaba G.: A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology, 2008; 123: 584-589
Antonelli A., Ferrari S.M., Frascerra S., Di Domenicantonio A., Nicolini A., Ferrari P., Ferrannini E., Fallahi P.: Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J. Clin. Endocrinol. Metab., 2011; 96: 1859-1863
Antonelli A., Ferrari S.M., Frascerra S., Galetta F., Franzoni F., Corrado A., Miccoli M., Benvenga S., Paolicchi A., Ferrannini E., Fallahi P.: Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine, 2011; 55: 288-293
Antonelli A., Ferri C., Ferrari S.M., Frascerra S., Ruffilli I., Caponi L., Ulisse S., Miccoli M., Miccoli P., Fallahi P.: High levels of circulating chemokine (C-X-C motif) ligand 11 are associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis and with chemokine (C-X-C motif) ligand 10. J. Interferon Cytokine Res., 2012; 32: 74-80
Antonelli A., Rotondi M., Fallahi P., Romagnani P., Ferrari S.M., Buonamano A., Ferrannini E., Serio M.: High levels of circulating CXC chemokine ligand 10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J. Clin. Endocrinol. Metab., 2004; 89: 5496-5499
Nanba T., Watanabe M., Inoue N., Iwatani Y.: Increases of the Th1/Th2 cell ratio in severe Hashimoto’s disease and in the proportion of Th17 cells in intractable Graves’ disease. Thyroid, 2009; 19: 495-501
Li D., Cai W., Gu R., Zhang Y., Zhang H., Tang K., Xu P., Katirai F., Shi W., Wang L., Huang T., Huang B.: Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin. Immunol., 2013; 149: 411-420
Xue H., Yu X., Ma L., Song S., Li Y., Zhang L., Yang T., Liu H.: The possible role of CD4+CD25highFoxp3+/CD4+IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine, 2015; 50: 665-673
Winther K.H., Wichman J.E.M., Bonnema S.J., Hegedüs L.: Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine, 2017; 55: 376-385