Itoh N., Ornitz D.M.: Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J. Biochem., 2011; 149: 121-130
Tulin S., Stathopoulos A.: Extending the family table: Insights from beyond vertebrates into the regulation of embryonic development by FGFs. Birth Defects Res C Embryo Today, 2010; 90: 214-227
Murzin A.G., Lesk A.M., Chothia C.: β-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors. J. Mol. Biol., 1992; 223: 531-543
Gosavi S., Whitford P.C., Jennings P.A., Onuchic J.N.: Extracting function from a beta-trefoil folding motif. Proc. Natl. Acad. Sci. USA, 2008; 105: 10384-10389
Nickel W., Seedorf M.: Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol., 2008; 24: 287-308
Prudovsky I., Tarantini F., Landriscina M., Neivandt D., Soldi R., Kirov A., Small D., Kathir K.M., Rajalingam D., Kumar T.K.: Secretion without Golgi. J. Cell. Biochem., 2008; 103: 1327-1343
Itoh N.: Hormone-like (endocrine) FGFs: Their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res., 2010; 342: 1-11
Medici D., Razzaque M.S., Deluca S., Rector T.L., Hou B., Kang K., Goetz R., Mohammadi M., Kuro-o M., Olsen B.R., Lanske B.: FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J. Cell Biol., 2008; 182: 459-465
Goetz R., Dover K., Laezza F., Shtraizent N., Huang X., Tchetchik D., Eliseenkova A.V., Xu C.F., Neubert T.A., Ornitz D.M., Goldfarb M., Mohammadi M.: Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J. Biol. Chem., 2009; 284: 17883-17896
Goldfarb M., Schoorlemmer J., Williams A., Diwakar S., Wang Q., Huang X., Giza J., Tchetchik D., Kelley K., Vega A., Matthews G., Rossi P., Ornitz D.M., D’Angelo E.: Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron, 2007; 55: 449-463
Kiefer P., Acland P., Pappin D., Peters G., Dickson C.: Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3. EMBO J., 1994; 13: 4126-4136
Kostas M., Lampart A., Bober J., Wiedlocha A., Tomala J., Krowarsch D., Otlewski J., Zakrzewska M.: Translocation of exogenous FGF1 and FGF2 protects the cell against apoptosis independently of receptor activation. J. Mol. Biol., 2018; 430: 4087-4101
Scotet E., Houssaint E.: The choice between alternative IIIb and IIIc exons of the FGFR-3 gene is not strictly tissue-specific. Biochim. Biophys. Acta, 1995; 1264: 238-242
Schlessinger J., Plotnikov A.N., Ibrahimi O.A., Eliseenkova A.V., Yeh B.K., Yayon A., Linhardt R.J., Mohammadi M.: Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell, 2000; 6: 743-750
Mohammadi M., Olsen S.K., Goetz R.: A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr. Opin. Struct. Biol., 2005; 15: 506-516
Mohammadi M., Dikic I., Sorokin A., Burgess W.H., Jaye M., Schlessinger J.: Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol. Cell. Biol., 1996; 16: 977-989
Mohammadi M., Honegger A.M., Rotin D., Fischer R., Bellot F., Li W., Dionne C.A., Jaye M., Rubinstein M., Schlessinger J.: A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol., 1991; 11: 5068-5078
Furdui C.M., Lew E.D., Schlessinger J., Anderson K.S.: Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol. Cell, 2006; 21: 711-717
Kouhara H., Hadari Y.R., Spivak-Kroizman T., Schilling J., Bar-Sagi D., Lax I., Schlessinger J.: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell, 1997; 89: 693-702
Lamothe B., Yamada M., Schaeper U., Birchmeier W., Lax I., Schlessinger J.: The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol. Cell. Biol., 2004; 24: 5657-5666
Dudka A.A., Sweet S.M., Heath J.K.: Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res., 2010; 70: 3391-3401
Cross M.J., Lu L., Magnusson P., Nyqvist D., Holmqvist K., Welsh M., Claesson-Welsh L.: The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol. Biol. Cell, 2002; 13: 2881-2893
Seo J.H., Suenaga A., Hatakeyama M., Taiji M., Imamoto A.: Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol. Cell. Biol., 2009; 29: 3076-3087
Zhang Y., Lin Y., Bowles C., Wang F.: Direct cell cycle regulation by the fibroblast growth factor receptor (FGFR) kinase through phosphorylation-dependent release of Cks1 from FGFR substrate 2. J. Biol. Chem., 2004; 279: 55348-55354
Hatai M., Hashi H., Mogi A., Soga H., Yokota J., Yaoi Y.: Stimulation of tyrosine- and serine-phosphorylation of focal adhesion kinase in mouse 3T3 cells by fibronectin and fibroblast growth factor. FEBS Lett., 1994; 350: 113-116
Flajolet M., Wang Z., Futter M., Shen W., Nuangchamnong N., Bendor J., Wallach I., Nairn A.C., Surmeier D.J., Greengard P.: FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat. Neurosci., 2008; 11: 1402-1409
Yokote H., Fujita K., Jing X., Sawada T., Liang S., Yao L., Yan X., Zhang Y., Schlessinger J., Sakaguchi K.: Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc. Natl. Acad. Sci. USA, 2005; 102: 18866-18871
Kiselyov V.V., Skladchikova G., Hinsby A.M., Jensen P.H., Kulahin N., Soroka V., Pedersen N., Tsetlin V., Poulsen F.M., Berezin V., Bock E.: Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure, 2003; 11: 691-701
Kulahin N., Li S., Hinsby A., Kiselyov V., Berezin V., Bock E.: Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol. Cell. Neurosci., 2008; 37: 528-536
Suyama K., Shapiro I., Guttman M., Hazan R.B.: A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2002; 2: 301-314
Francavilla C., Cattaneo P., Berezin V., Bock E., Ami D., de Marco A., Christofori G., Cavallaro U.: The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J. Cell Biol., 2009; 187: 1101-1116
Zamai M., Trullo A., Giordano M., Corti V., Cuesta E.A., Francavilla C., Cavallaro U., Caiolfa V.R.: Number and brightness analysis reveals that NCAM and FGF2 elicit different assembly and dynamics of FGFR1 in live cells. J. Cell Sci., 2019; 132: jcs220624
Camps M., Nichols A., Gillieron C., Antonsson B., Muda M., Chabert C., Boschert U., Arkinstall S.: Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science, 1998; 280: 1262-1265