Nisar M.A., Ross K.E., Brown M.H., Bentham R., Whiley H.: Legionella pneumophila and protozoan hosts: Implications for the control of hospital and potable water systems. Pathogens, 2020; 9: 286
Palazzolo C., Maffongelli G., D’Abramo A., Lepore L., Mariano A., Vulcano A., Bartoli T.A., Bevilacqua N., Giancola M.L., Di Rosa E., Nicastri E.: Legionella pneumonia: Increased risk after CO-VID-19 lockdown? Italy, May to June 2020. Euro. Surveill., 2020; 25: 2001372
Vincent C.D., Friedman J.R., Jeong K.C., Buford E.C., Miller J.L., Vogel J.P.: Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol., 2006; 62: 1278-1291
Palusińska-Szysz M., Russa R.: Chemical structure and biological significance of lipopolysaccharide from Legionella. Recent Pat. Antiinfect. Drug Discov., 2009; 4: 96-107
Schmölders J., Manske C., Otto A., Hoffmann C., Steiner B., Welin A., Becher D., Hilbi H.: Comparative proteomics of purified pathogen vacuoles correlates intracellular replication of Legionella pneumophila with the small GTPase Ras-related protein 1 (Rap1). Mol. Cell. Proteomics, 2017; 16: 622-641
Newton H.J., Ang D.K., van Driel I.R., Hartland E.L.: Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev., 2010; 23: 274-298
Palusińska-Szysz M., Cendrowska-Pinkosz M.: Występowanie i chorobotwórczość bakterii z rodziny Legionellaceae. Postępy Hig. Med. Dośw., 2008; 62: 337-353
Inaba J.I., Xu K., Kovalev N., Ramanathan H., Roy C.R., Lindenbach B.D., Nagy P.D.: Screening Legionella effectors for antiviral effects reveals Rab1 GTPase as a proviral factor coopted for tombusvirus replication. Proc. Natl. Acad. Sci. USA, 2019; 116: 21739-21747
Segal G., Purcell M., Shuman H.A.: Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA, 1998; 95: 1669-1674
Zuckman D.M., Hung J.B., Roy C.R.: Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol. Microbiol., 1999; 32: 990-1001
Nakano N., Kubori T., Kinoshita M., Imada K., Nagai H.: Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog., 2010; 6: e1001129
Durie C.L., Sheedlo M.J., Chung J.M., Byrne B.G., Su M., Knight T., Swanson M., Lacy D.B., Ohi M.D.: Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. eLife, 2020; 9: e59530
Luo Z.Q., Isberg R.R.: Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA, 2004; 101: 841-846
Kubori T., Koike M., Bui X.T., Higaki S., Aizawa S.I., Nagai H.: Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc. Natl. Acad. Sci. USA, 2014; 111: 11804-11809
Meir A., Macé K., Lukoyanova N., Chetrit D., Hospenthal M.K., Redzej A., Roy C., Waksman G.: Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat. Commun., 2020; 11: 2864
Vincent C.D., Friedman J.R., Jeong K.C., Sutherland M.C., Vogel J.P.: Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol., 2012; 85: 378-391
Kwak M.J., Kim J.D., Kim H., Kim C., Bowman J.W., Kim S., Joo K., Lee J., Jin K.S., Kim Y.G., Lee N.K., Jung J.U., Oh B.H.: Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol., 2017; 2: 17114
Szpirer C.Y., Faelen M., Couturier M.: Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob. Mol. Microbiol., 2000; 37: 1283-1292
Tato I., Zunzunegui S., de la Cruz F., Cabezon E.: TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc. Natl. Acad. Sci. USA, 2005; 102: 8156-8161
Sexton J.A., Miller J.L., Yoneda A., Kehl-Fie T.E., Vogel J.P.: Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun., 2004; 72: 5983-5992
Kim H., Kubori T., Yamazaki K., Kwak M.J., Park S.Y., Nagai H., Vogel J.P., Oh B.H.: Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nat. Commun., 2020; 11: 2623
Parsot C., Hamiaux C., Page A.L.: The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol., 2003; 6: 7-14
Ninio S., Zuckman-Cholon D.M., Cambronne E.D., Roy C.R.: The Legionella IcmS-IcmW protein complex is important for Dot/Icmmediated protein translocation. Mol. Microbiol., 2005; 55: 912-926
Nagai H., Cambronne E.D., Kagan J.C., Amor J.C., Kahn R.A., Roy C.R.: A C-terminal translocation signal required for Dot/Icmdependent delivery of the Legionella RalF protein to host cells. Proc. Natl. Acad. Sci. USA, 2005; 102: 826-831
Matthews M., Roy C.R.: Identification and subcellular localization of the Legionella pneumophila IcmX protein: A factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect. Immun., 2000; 68: 3971-3982
Farelli J.D., Gumbart J.C., Akey I.V., Hempstead A., Amyot W., Head J.F., McKnight C.J., Isberg R.R., Akey C.W.: IcmQ in the type 4b secretion system contains an NAD+ binding domain. Structure, 2013; 21: 1361-1373
Jørgensen R., Wang Y., Visschedyk D., Merrill A.R.: The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep., 2008; 9: 802-809
Sexton J.A., Yeo H.J., Vogel J.P.: Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol., 2005: 57, 70-84
Sherwood R.K., Roy C.R.: Autophagy evasion and endoplasmic reticulum subversion: The yin and yang of Legionella intracellular infection. Annu. Rev. Microbiol., 2016; 70: 413-433
Laguna R.K., Creasey E.A., Li Z., Valtz N., Isberg R.R.: A Legionella pneumophila translocated substrate that is required for growth within macrophages and protection from host cell death. Proc. Natl. Acad. Sci. USA, 2006; 103: 18745-18750
Quan F.S., Kong H.H., Lee H.A., Chu K.B., Moona E.K.: Identification of differentially expressed Legionella genes during its intracellular growth in Acanthamoeba. Heliyon., 2020; 6: e05238
Park D., Chetrit D., Hu B., Roy C.R., Liu J.: Analysis of Dot/Icm type IVB secretion system subassemblies by cryoelectron tomography reveals conformational changes induced by DotB binding. mBio, 2020; 11: e03328-19
Kuroda T., Kubori T., Bui X.T., Hyakutake A., Uchida Y, Imad K., Nagai H.: Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci. Rep., 2015; 5: 10912
Roy C.R., Isberg R.R.: Topology of Legionella pneumophila DotA: An inner membrane protein required for replication in macrophages. Infect. Immun., 1997; 65: 571-578
Hsu F.S., Zhu W., Brennan L., Tao L., Luo Z.Q., Mao Y.: Structural basis for substrate recognition by a unique Legionella phos-phoinositide phosphatase. Proc. Natl. Acad. Sci. USA, 2012; 1090: 13567-13572
Gal-Mor O., Zusman T., Segal G.: Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J. Bacteriol., 2002; 184: 3823-3833
Ramsey M.E., Woodhams K.L., Dillard J.P.: The gonococcal genetic island and type IV secretion in the pathogenic Neisseria. Front. Microbiol., 2011; 2: 61
Price C.T., Al-Khodor S., Al-Quadan T., Santic M., Habyarimana F., Kalia A., Kwaik Y.A.: Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog., 2009; 5: e1000704
Sampei G., Furuya N., Tachibana K., Saitou Y., Suzuki T., Mizobuchi K., Komano T.: Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid, 2010; 64: 92-103
Hoffmann C., Finsel I., Otto A., Pfaffinger G., Rothmeier E., Hecker M., Becher D., Hilbi H.: Functional analysis of novel Rab GT-Pases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell. Microbiol., 2014; 16: 1034-1052
Lightfield K.L., Persson J., Brubaker S.W., Witte C.E., von Moltke J., Dunipace E.A., Henry T., Sun Y.H., Cado D., Dietrich W.F., Monack D.M., Tsolis R.M., Vance R E.: Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol., 2008; 9: 1171-1178
Rothmeier E., Pfaffinger G., Hoffmann C., Harrison C.F., Grabmayr H., Repnik U., Hannemann M., Wölke S., Bausch A., Griffiths G. i wsp.: Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog., 2013; 9: e1003598
Shen X., Banga S., Liu Y., Xu L., Gao P., Shamovsky I., Nudler E., Luo Z.Q.: Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell. Microbiol., 2009; 11: 911-926
Derré I., Isberg R.R.: Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect. Immun., 2004; 72: 3048-3053
Pan X., Lührmann A., Satoh A., Laskowski-Arce M.A., Roy C.R.: Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science, 2008; 320: 1651-1654
Purcell M., Shuman H.A.: The Legionella pneumophila icmGCD-JBF genes are required for killing of human macrophages. Infect. Immun., 1998; 66: 2245-2255
Qiu J., Sheedlo M.J., Yu K., Tan Y., Nakayasu E.S., Das C., Liu X., Luo Z.Q.: Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016; 533: 120-124
Steiner B., Swart A.L., Welin A., Weber S., Personnic N., Kaech A., Freyre C., Ziegler U., Klemm R.W., Hilbi H.: ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep., 2017; 18: 1817-1836
Amor J.C., Swails J., Zhu X., Roy C.R., Nagai H., Ingmundson A., Cheng X., Kahn R.A.: The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J. Biol. Chem., 2005; 280: 1392-1400
Meir A., Chetrit D., Liu L., Roy C.R., Waksman G.: Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nat. Commun., 2018; 9: 507
Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H.: Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem., 2009; 284: 4846-4856
Chen J., Reyes M., Clarke M., Shuman H.A.: Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell. Microbiol., 2007; 9: 1660-1671
Conover G.M., Derré I., Vogel J.P., Isberg R.R.: The Legionella pneumophila LidA protein: A translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol., 2003; 48: 305-321
Creasey E.A., Isberg R.R.: The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc. Natl. Acad. Sci. USA, 2012: 109: 3481-3486
Banga S., Gao P., Shen X., Fiscus V., Zong W.X., Chen L., Luo Z.Q.: Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl. Acad. Sci. USA, 2007; 104: 5121-5126
Ge J., Xu H., Li T., Zhou Y., Zhang Z., Li S., Liu L., Shao F.: A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl. Acad. Sci. USA, 2009; 106: 13725-13730
Ivanov S.S., Roy C.R.: Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/ Icm system. Cell. Microbiol., 2009; 11: 261-278
Fontana M.F., Banga S., Barry K.C., Shen X., Tan Y., Luo Z.Q., Vance R.E.: Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog., 2011; 7: e1001289