Have a personal or library account? Click to login

Budowa IV systemu sekrecji Legionella pneumophilai jego znaczenie w patogenezie

Open Access
|Oct 2021

References

  1. Cazalet C., Rusniok C., Brüggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C., Vandenesch F., Kunst F., Etienne J., Glaser P., Buchrieser C.: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet., 2004; 36:1165-1173
  2. Rolando M., Sanulli S., Rusniok C., Gomez-Valero L., Bertholet C., Sahr T., Margueron R., Buchrieser C.: Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe, 2013; 13: 395-405
  3. Nisar M.A., Ross K.E., Brown M.H., Bentham R., Whiley H.: Legionella pneumophila and protozoan hosts: Implications for the control of hospital and potable water systems. Pathogens, 2020; 9: 286
  4. Palazzolo C., Maffongelli G., D’Abramo A., Lepore L., Mariano A., Vulcano A., Bartoli T.A., Bevilacqua N., Giancola M.L., Di Rosa E., Nicastri E.: Legionella pneumonia: Increased risk after CO-VID-19 lockdown? Italy, May to June 2020. Euro. Surveill., 2020; 25: 2001372
  5. Finnerty W.R., Makula R.A., Feeley J.C.: Cellular lipids of the Legionnaires’ disease bacterium. Ann. Intern. Med., 1979; 90: 631634
  6. Vincent C.D., Friedman J.R., Jeong K.C., Buford E.C., Miller J.L., Vogel J.P.: Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol., 2006; 62: 1278-1291
  7. Palusińska-Szysz M., Russa R.: Chemical structure and biological significance of lipopolysaccharide from Legionella. Recent Pat. Antiinfect. Drug Discov., 2009; 4: 96-107
  8. Shevchuk O., Jäger J., Steinert M.: Virulence properties of the Legionella pneumophila cell envelope. Front. Microbiol., 2011; 2: 74
  9. Locht C., Coutte L., Mielcarek N.: The ins and outs of pertussis toxin. FEBS J., 2011; 278: 4668-4682
  10. Schmölders J., Manske C., Otto A., Hoffmann C., Steiner B., Welin A., Becher D., Hilbi H.: Comparative proteomics of purified pathogen vacuoles correlates intracellular replication of Legionella pneumophila with the small GTPase Ras-related protein 1 (Rap1). Mol. Cell. Proteomics, 2017; 16: 622-641
  11. Isberg R.R., O’Connor T.J., Heidtman M.: The Legionella pneumophila replication vacuole: Making a cosy niche inside host cells. Nat. Rev. Microbiol., 2009; 7: 13-24
  12. de la Cruz F., Frost L.S., Meyer R.J., Zechner E.L.: Conjugative DNA metabolism in gram-negative bacteria. FEMS Microbiol. Rev., 2010; 34: 18-40
  13. Newton H.J., Ang D.K., van Driel I.R., Hartland E.L.: Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev., 2010; 23: 274-298
  14. Palusińska-Szysz M., Cendrowska-Pinkosz M.: Występowanie i chorobotwórczość bakterii z rodziny Legionellaceae. Postępy Hig. Med. Dośw., 2008; 62: 337-353
  15. Paumet F., Wesolowski J., Garcia-Diaz A., Delevoye C., Aulner N., Shuman H.A., Subtil A., Rothman J.E.: Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS One, 2009; 4: e7375
  16. Chandran Darbari V., Waksman G.: Structural biology of bacterial type IV secretion systems. Annu. Rev. Biochem., 2015; 84: 603629
  17. Inaba J.I., Xu K., Kovalev N., Ramanathan H., Roy C.R., Lindenbach B.D., Nagy P.D.: Screening Legionella effectors for antiviral effects reveals Rab1 GTPase as a proviral factor coopted for tombusvirus replication. Proc. Natl. Acad. Sci. USA, 2019; 116: 21739-21747
  18. Segal G., Purcell M., Shuman H.A.: Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA, 1998; 95: 1669-1674
  19. Zuckman D.M., Hung J.B., Roy C.R.: Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol. Microbiol., 1999; 32: 990-1001
  20. Sutherland M.C., Nguyen T.L., Tseng V., Vogel J.P.: The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Path., 2012; 8: e1002910
  21. Nakano N., Kubori T., Kinoshita M., Imada K., Nagai H.: Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog., 2010; 6: e1001129
  22. Kirby J.E., Vogel J.P., Andrews H.L., Isberg R.R.: Evidence for pore-forming ability by Legionella pneumophila. Mol. Microbiol., 1998; 27: 323-336
  23. Durie C.L., Sheedlo M.J., Chung J.M., Byrne B.G., Su M., Knight T., Swanson M., Lacy D.B., Ohi M.D.: Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. eLife, 2020; 9: e59530
  24. Luo Z.Q., Isberg R.R.: Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA, 2004; 101: 841-846
  25. Dorer M.S., Kirton D., Bader J.S., Isberg R.R.: RNA interference analysis of Legionella in Drosophila cells: Exploitation of early secretory apparatus dynamics. PLoS Pathog., 2006; 2: e34
  26. Kubori T., Koike M., Bui X.T., Higaki S., Aizawa S.I., Nagai H.: Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc. Natl. Acad. Sci. USA, 2014; 111: 11804-11809
  27. Meir A., Macé K., Lukoyanova N., Chetrit D., Hospenthal M.K., Redzej A., Roy C., Waksman G.: Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat. Commun., 2020; 11: 2864
  28. Vincent C.D., Friedman J.R., Jeong K.C., Sutherland M.C., Vogel J.P.: Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol., 2012; 85: 378-391
  29. Kwak M.J., Kim J.D., Kim H., Kim C., Bowman J.W., Kim S., Joo K., Lee J., Jin K.S., Kim Y.G., Lee N.K., Jung J.U., Oh B.H.: Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol., 2017; 2: 17114
  30. Massey T.H., Mercogliano C.P., Yates J., Sherratt D.J., Löwe J.: Double-stranded DNA translocation: Structure and mechanism of hexameric FtsK. Mol. Cell, 2006; 23: 457-469
  31. Morozova I., Qu X., Shi S., Asamani G., Greenberg J.E., Shuman H.A., Russo J.J.: Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid, 2004; 51: 127-147
  32. Szpirer C.Y., Faelen M., Couturier M.: Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob. Mol. Microbiol., 2000; 37: 1283-1292
  33. Tato I., Zunzunegui S., de la Cruz F., Cabezon E.: TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc. Natl. Acad. Sci. USA, 2005; 102: 8156-8161
  34. Sexton J.A., Miller J.L., Yoneda A., Kehl-Fie T.E., Vogel J.P.: Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun., 2004; 72: 5983-5992
  35. Kim H., Kubori T., Yamazaki K., Kwak M.J., Park S.Y., Nagai H., Vogel J.P., Oh B.H.: Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nat. Commun., 2020; 11: 2623
  36. Parsot C., Hamiaux C., Page A.L.: The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol., 2003; 6: 7-14
  37. Ninio S., Zuckman-Cholon D.M., Cambronne E.D., Roy C.R.: The Legionella IcmS-IcmW protein complex is important for Dot/Icmmediated protein translocation. Mol. Microbiol., 2005; 55: 912-926
  38. Nagai H., Cambronne E.D., Kagan J.C., Amor J.C., Kahn R.A., Roy C.R.: A C-terminal translocation signal required for Dot/Icmdependent delivery of the Legionella RalF protein to host cells. Proc. Natl. Acad. Sci. USA, 2005; 102: 826-831
  39. Huang L., Boyd D., Amyot W.M., Hempstead A.D., Luo Z.Q., O’Connor T.J., Chen C., Machner M., Montminy T., Isberg R.R.: The E Block motif is associated with Legionella pneumophila translocated substrates. Cell. Microbiol., 2011; 13: 227-245
  40. Matthews M., Roy C.R.: Identification and subcellular localization of the Legionella pneumophila IcmX protein: A factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect. Immun., 2000; 68: 3971-3982
  41. Schuelein R., Spencer H., Dagley L.F., Li P.F., Luo L., Stow J.L., Abraham G., Naderer T., Gomez-Valero L., Buchrieser C., Sugimoto C., Yamagishi J., Webb A.I., Pasricha S., Hartland E.L.: Targeting of RNA polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cell. Microbiol., 2018; 20: e12852
  42. Farelli J.D., Gumbart J.C., Akey I.V., Hempstead A., Amyot W., Head J.F., McKnight C.J., Isberg R.R., Akey C.W.: IcmQ in the type 4b secretion system contains an NAD+ binding domain. Structure, 2013; 21: 1361-1373
  43. Jørgensen R., Wang Y., Visschedyk D., Merrill A.R.: The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep., 2008; 9: 802-809
  44. Quaile A.T., Stogios P.J., Egorova O., Evdokimova E., Valleau D., Nocek B., Kompella P.S., Peisajovich S., Yakunin A.F., Ensminger A.W., Savchenko A.: The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. J. Biol. Chem., 2018; 293: 3307-3320
  45. Sexton J.A., Yeo H.J., Vogel J.P.: Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol., 2005: 57, 70-84
  46. Sherwood R.K., Roy C.R.: Autophagy evasion and endoplasmic reticulum subversion: The yin and yang of Legionella intracellular infection. Annu. Rev. Microbiol., 2016; 70: 413-433
  47. Laguna R.K., Creasey E.A., Li Z., Valtz N., Isberg R.R.: A Legionella pneumophila translocated substrate that is required for growth within macrophages and protection from host cell death. Proc. Natl. Acad. Sci. USA, 2006; 103: 18745-18750
  48. Quan F.S., Kong H.H., Lee H.A., Chu K.B., Moona E.K.: Identification of differentially expressed Legionella genes during its intracellular growth in Acanthamoeba. Heliyon., 2020; 6: e05238
  49. Park D., Chetrit D., Hu B., Roy C.R., Liu J.: Analysis of Dot/Icm type IVB secretion system subassemblies by cryoelectron tomography reveals conformational changes induced by DotB binding. mBio, 2020; 11: e03328-19
  50. Nagai H., Kubori T.: Type IVB Secretion systems of Legionella and other Gram-negative bacteria. Front. Microbiol., 2011; 2: 136
  51. Kuroda T., Kubori T., Bui X.T., Hyakutake A., Uchida Y, Imad K., Nagai H.: Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci. Rep., 2015; 5: 10912
  52. Kubori T., Nagai H.: The Type IVB secretion system: An enigmatic chimera. Curr. Opin. Microbiol., 2016; 29: 22-29
  53. Roy C.R., Isberg R.R.: Topology of Legionella pneumophila DotA: An inner membrane protein required for replication in macrophages. Infect. Immun., 1997; 65: 571-578
  54. Higgins C.F.: The ABC of channel regulation. Cell, 1995; 82: 693696
  55. Hsu F.S., Zhu W., Brennan L., Tao L., Luo Z.Q., Mao Y.: Structural basis for substrate recognition by a unique Legionella phos-phoinositide phosphatase. Proc. Natl. Acad. Sci. USA, 2012; 1090: 13567-13572
  56. Vance J.E., Vance D.E.: Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol., 2004; 82: 113-128
  57. Gal-Mor O., Zusman T., Segal G.: Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J. Bacteriol., 2002; 184: 3823-3833
  58. Ramsey M.E., Woodhams K.L., Dillard J.P.: The gonococcal genetic island and type IV secretion in the pathogenic Neisseria. Front. Microbiol., 2011; 2: 61
  59. Heidtman M., Chen E.J., Moy M.Y., Isberg R.R.: Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell. Microbiol., 2009; 11: 230-248
  60. Hirsch C., Gauss R., Horn S.C., Neuber O., Sommer T.: The ubiquitylation machinery of the endoplasmic reticulum. Nature, 2009; 458: 453-460
  61. Price C.T., Al-Khodor S., Al-Quadan T., Santic M., Habyarimana F., Kalia A., Kwaik Y.A.: Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog., 2009; 5: e1000704
  62. Sampei G., Furuya N., Tachibana K., Saitou Y., Suzuki T., Mizobuchi K., Komano T.: Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid, 2010; 64: 92-103
  63. Rolando M., Escoll P., Nora T., Botti J., Boitez V., Bedia C., Daniels C., Abraham G., Stogios P.J., Skarina T. i wsp.: Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc. Natl. Acad. Sci. USA, 2016; 113: 19011906
  64. Nachmias N., Zusman T., Segal G.: Study of Legionella effector domains revealed novel and prevalent phosphatidylinositol 3-phosphate binding domains. Infect. Immun., 2019; 87: e00153-19
  65. Grohmann E., Christie P.J., Waksman G., Backert S.: Type IV secretion in gram-negative and gram-positive bacteria. Mol. Microbiol., 2018; 107: 455-471
  66. Hoffmann C., Finsel I., Otto A., Pfaffinger G., Rothmeier E., Hecker M., Becher D., Hilbi H.: Functional analysis of novel Rab GT-Pases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell. Microbiol., 2014; 16: 1034-1052
  67. Lightfield K.L., Persson J., Brubaker S.W., Witte C.E., von Moltke J., Dunipace E.A., Henry T., Sun Y.H., Cado D., Dietrich W.F., Monack D.M., Tsolis R.M., Vance R E.: Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol., 2008; 9: 1171-1178
  68. Rothmeier E., Pfaffinger G., Hoffmann C., Harrison C.F., Grabmayr H., Repnik U., Hannemann M., Wölke S., Bausch A., Griffiths G. i wsp.: Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog., 2013; 9: e1003598
  69. Shen X., Banga S., Liu Y., Xu L., Gao P., Shamovsky I., Nudler E., Luo Z.Q.: Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell. Microbiol., 2009; 11: 911-926
  70. Derré I., Isberg R.R.: Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect. Immun., 2004; 72: 3048-3053
  71. Ingmundson A., Delprato A., Lambright D.G., Roy C.R.: Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature, 2007; 450: 365-369
  72. Machner M.P., Isberg R.R.: A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science, 2007; 318: 974977
  73. Shin S., Case C.L., Archer K.A., Nogueira C.V., Kobayashi K.S., Flavell R.A., Roy C.R., Zamboni D.S.: Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog., 2008; 4: e1000220
  74. Pan X., Lührmann A., Satoh A., Laskowski-Arce M.A., Roy C.R.: Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science, 2008; 320: 1651-1654
  75. Purcell M., Shuman H.A.: The Legionella pneumophila icmGCD-JBF genes are required for killing of human macrophages. Infect. Immun., 1998; 66: 2245-2255
  76. Qiu J., Sheedlo M.J., Yu K., Tan Y., Nakayasu E.S., Das C., Liu X., Luo Z.Q.: Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016; 533: 120-124
  77. Steiner B., Swart A.L., Welin A., Weber S., Personnic N., Kaech A., Freyre C., Ziegler U., Klemm R.W., Hilbi H.: ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep., 2017; 18: 1817-1836
  78. Escoll P., Song O.R., Viana F., Steiner B., Lagache T., Olivo-Marin J.C., Impens F., Brodin P., Hilbi H., Buchrieser C.: Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell. Host Microbe, 2017; 22: 302-316.e7
  79. Machner M.P., Isberg R.R.: Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell., 2006; 11: 47-56
  80. Amor J.C., Swails J., Zhu X., Roy C.R., Nagai H., Ingmundson A., Cheng X., Kahn R.A.: The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J. Biol. Chem., 2005; 280: 1392-1400
  81. Meir A., Chetrit D., Liu L., Roy C.R., Waksman G.: Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nat. Commun., 2018; 9: 507
  82. Nagai H., Kagan J.C., Zhu X., Kahn R.A., Roy C.R.: A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science, 2002; 295: 679-682
  83. Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H.: Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem., 2009; 284: 4846-4856
  84. Chen J., Reyes M., Clarke M., Shuman H.A.: Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell. Microbiol., 2007; 9: 1660-1671
  85. Conover G.M., Derré I., Vogel J.P., Isberg R.R.: The Legionella pneumophila LidA protein: A translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol., 2003; 48: 305-321
  86. Choy A., Dancourt J., Mugo B., O’Connor T.J., Isberg R.R., Melia T.J., Roy C.R.: The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science, 2012; 338: 1072-1076
  87. Creasey E.A., Isberg R.R.: The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc. Natl. Acad. Sci. USA, 2012: 109: 3481-3486
  88. Banga S., Gao P., Shen X., Fiscus V., Zong W.X., Chen L., Luo Z.Q.: Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl. Acad. Sci. USA, 2007; 104: 5121-5126
  89. Gan N., Nakayasu E.S., Hollenbeck P.J., Luo Z.Q.: Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat. Microbiol., 2019; 4: 134-143
  90. Losick V.P., Haenssler E., Moy M.Y., Isberg R.R.: LnaB: A Legionella pneumophila activator of NF-κB. Cell. Microbiol., 2010: 12: 1083-1097
  91. Ge J., Xu H., Li T., Zhou Y., Zhang Z., Li S., Liu L., Shao F.: A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl. Acad. Sci. USA, 2009; 106: 13725-13730
  92. Ivanov S.S., Roy C.R.: Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/ Icm system. Cell. Microbiol., 2009; 11: 261-278
  93. Fontana M.F., Banga S., Barry K.C., Shen X., Tan Y., Luo Z.Q., Vance R.E.: Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog., 2011; 7: e1001289
  94. Joseph A.M., Pohl A., Ball T.J., Abram T.G., Johnson D.K., Geisbrecht B.V., Shames S.R.: The Legionella pneumophila metaef-fector Lpg2505 (MesI) regulates SidI-mediated translation inhibition and novel glycosyl hydrolase activity. Infect. Immun., 2020; 88: e00853-19
  95. Belyi Y., Niggeweg R., Opitz B., Vogelsgesang M., Hippenstiel S., Wilm M., Aktories K.: Legionella pneumophila glucosyl transfer-ase inhibits host elongation factor 1A. Proc. Natl. Acad. Sci. USA, 2006; 103: 16953-16958
  96. Silverman P.M., Clarke M.B.: New insights into F-pilus structure, dynamics, and function. Integr. Biol., 2010; 2: 25-31
Language: English
Page range: 548 - 562
Submitted on: Sep 19, 2020
Accepted on: Feb 24, 2021
Published on: Oct 21, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Bożena Kowalczyk, Agata Małek, Marta Palusińska-Szysz, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.