Have a personal or library account? Click to login

Application potential of modulation of cyclooxygenase-2 activity: a cognitive approach

Open Access
|Dec 2021

References

  1. Watson R., Preedy V.: Omega Fatty Acids in Brain and Neurological Health. 2nd Edition. Academic Press, Cambridge MA, 2019.
  2. Zivkovic A.M., Telis N., German J.B., Hammock B.D.: Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif. Agric., 2011; 65: 106–111.
  3. Hanna V.S., Hafez E.A.: Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018; 11: 23–32.
  4. Lowin T., Straub R.H.: Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther., 2015; 17: 226.
  5. Burdan F., Chałas A., Szumiło J.: Cyclooxygenase and prostanoids: biological implications. Postępy Hig. Med. Dośw., 2006; 60: 129–141.
  6. Fonteh A.N., Wykle R.L.: Arachidonate Remodeling and Inflammation. Birkhäuser Basel, Basel 2004.
  7. Kudalkar S.N., Rouzera C.A., Marnett L.J.: The peroxidase and cyclooxygenase activity of prostaglandin H synthase. In: Heme Peroxdases, Eds: E. Ravenm, B. Dunford. The Royal Society of Chemistry, London 2016, 245–271.
  8. Strauss K.I.: Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav. Immun., 2008; 22: 285–298.
  9. Breder C., Dewitt D., Kraig R.P.: Characterization of inducible cyclooxygenase in rat brain. J. Comp. Neurol., 1995; 355: 296–315.
  10. Yamagata K., Andreasson K.I., Kaufmann W.E., Barnes C.A., Worley P.F.: Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron, 1993; 11: 371–386.
  11. López D.E., Ballaz S.J.: The role of brain cyclooxygenase-2 (Cox-2) beyond neuroinflammation: Neuronal homeostasis in memory and anxiety. Mol. Neurobiol., 2020; 57: 5167–5176.
  12. Sang N., Zhang J., Marcheselli V., Bazan N.G., Chen C.: Post-synaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J. Neurosci., 2005; 25: 9858–9870.
  13. Rouzer C.A., Marnett L.J.: Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009; 50: S29–S34.
  14. Smith W.L., Langenbach R.: Why there are two cyclooxygenase isozymes. J. Clin. Invest., 2001; 107: 1491–1495.
  15. Blobaum A.L., Marnett L.J.: Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007; 50: 1425–1441.
  16. Vecchio A.J., Malkowski M.G.: The structure of NS-398 bound to cyclooxygenase-2. J. Struct. Biol., 2011; 176: 254–258.
  17. Müller N.: COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front. Psychiatry, 2019; 10: 375.
  18. Dinchuk J.E., Car B.D., Focht R.J., Johnston J.J., Jaffee B.D., Covington M.B., Contel N.R., Eng V.M., Collins R.J., Czerniak P.M., et al.: Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature, 1995; 378: 406–409.
  19. Langenbach R., Morham S.G., Tiano H.F., Loftin C.D., Ghanayem B.I., Chulada P.C., Mahler J.F., Lee C.A., Goulding E.H., Kluckman K.D., et al.: Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell, 1995; 83: 483–492.
  20. Lim H., Paria B.C., Das S.K., Dinchuk J.E., Langenbach R., Trzaskos J.M., Dey S.K.: Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell, 1997; 91: 197–208.
  21. Morham S.G., Langenbach R., Loftin C.D., Tiano H.F., Vouloumanos N., Jennette J.C., Mahler J.F., Kluckman K.D., Ledford A., Lee C.A., Smithies O.: Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell, 1995; 83: 473–482.
  22. Teather L.A., Packard M.G., Bazan N.G.: Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn. Mem., 2002; 9: 41–47.
  23. Stachowicz K., Bobula B., Tokarski K.: NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice. Brain Res., 2020; 1734: 146741.
  24. Stachowicz K.: Behavioral consequences of the co-administration of MTEP and the COX-2 inhibitor, NS398 in mice. Part 1. Behav. Brain Res., 2019; 370: 111961.
  25. Harrison F.E., Hosseini A.H., McDonald M.P.: Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory task. Behav. Brain Res., 2009; 198: 247–251.
  26. Jerusalinsky D., Fin C., Quillfeld J.A., Ferreiara M.B., Schmitz P.K., Da Silva R.C., Walz R., Bazan N.G., Medina J.H., Izquierdo I.: Effect of antagonists of platelet-activating factor receptors on memory of inhibitory avoidance in rats. Behav. Neural Biol., 1994; 62: 1–3.
  27. Loza A.M., Elias V., Wong C.P., Ho E., Bermudez M., Magnusson K.R.: Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience, 2017; 344: 276–292.
  28. Stark D.T., Bazan N.G.: Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J. Neurosci., 2011; 31: 13710–13721.
  29. Packard M.G., Teather L.A.: Double dissociation of hippocampal and dorsal-striatal memory systems by post-training intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav. Neuro-sci., 1997; 111: 545–551.
  30. Stachowicz K., Sowa-Kućma M., Pańczyszyn-Trzewik P., Misztak P., Marciniak M., Bobula B., Tokarski K.: Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 2. Neurosci. Lett., 2021; 741: 135435.
  31. Cowley T.R., Fahey B., O’Mara S.M.: COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo. Eur. J. Neurosci., 2008; 27: 2999–3008.
  32. Chen C., Magee J.C., Bazan N.G.: Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol., 2002; 87: 2851–2857.
  33. Wong C.T., Bestard-Lorigados I., Crawford D.A.: Autism-related behaviors in the cyclooxygenase-2-deficient mouse model. Genes Brain Behav., 2019; 18: e12506.
  34. Li H.L., Huang B.S., Vishwasrao H., Sutedja N., Chen W., Jin I., Hawkins R.D., Bailey C.H., Kandel E.R.: Dscam mediates trans-synaptic interactions for remodeling of glutamate receptors in Aplysia during de novo and learning-related synapse formation. Neuron, 2009; 61: 527–540.
  35. Stachowicz K.: The role of DSCAM in the regulation of synaptic plasticity: Possible involvement in neuropsychiatric disorders. Acta Neurobiol. Exp., 2018; 78: 201–219.
  36. Neuss H., Huang X., Hetfeld B.K., Deva R., Henklein P., Nigam S., Mall J.W., Schwenk W., Dubiel W.: The ubiquitin- and protea-some-dependent degradation of COX-2 is regulated by the COP9 signalosome and differentially influenced by coxibs. J. Mol. Med., 2007; 85: 961–970.
  37. Head E., Lott I.T., Patterson D., Doran E., Haier R.J.: Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: Targets for nonpharmacological intervention. J. Alzheimers Dis., 2007; 11: 61–76.
  38. Jia Y.L., Jing L.J., Li J.Y., Lu J.J., Han R., Wang S.Y., Peng T., Jia Y.J.: Expression and significance of DSCAM in the cerebral cortex of APP transgenic mice. Neurosci. Lett., 2011; 491: 153–157.
  39. Cillero-Pastor B., Caramés B., Lires-Deán M., Vaamonde-García C., Blanco F.J, López-Armada M.J.: Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheumat., 2008; 58: 2409–2419.
  40. Kubis A.M., Janusz M.: Alzheimer disease: New prospects in therapy and applied experimental models. Postępy Hig. Med. Dośw., 2008; 62: 372–392.
  41. Hoozemans J.J., Rozemuller A.J., Janssen I., De Groot C.J., Veerhuis R., Eikelenboom P.: Cyclooxygenase expression in microglia and neurons in Alzheimer disease and control brain. Acta Neuropathol., 2001; 101: 2–8.
  42. Yermakova A.V., O’Banion M.K.: Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer disease. Neurobiol. Aging, 2001; 22: 823–836.
  43. Medeiros R., Figueiredo C.P., Pandolfo P., Duarte F.S., Prediger R.D., Passos G.F., Calixto J.B.: The role of TNF-α signaling pathway on COX-2 upregulation and cognitive decline induced by β-amyloid peptide. Behav. Brain Res., 2010; 209: 165–173.
  44. Strauss K.I., Marini A.M.: Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cel death. J. Neurotrauma, 2002; 19: 627–638.
  45. Grishin A.V., Wang J., Potoka D.A., Hackam D.J., Upperman J.S., Boyle P., Zamora R., Ford H.R.: Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J. Immunol., 2006; 176: 580–588.
  46. Akter K., Lanza E.A., Martin S.A., Myronyuk N., Rua M., Raffa R.B.: Diabetes mellitus and Alzheimer disease: Shared pathology and treatment? Br. J. Clin. Pharmacol., 2011; 71: 365–376.
  47. Tabecka-Lonczyńska A., Mytych J., Solek P., Kulpa-Greszta M., Jasiewicz P., Sowa-Kućma M., Stachowicz K., Koziorowski M.: IGF-1 as selected growth factor multi-response to antidepressant-like substances activity in C57BL/6J mouse testis model. Acta Histochem., 2021; 123: 151685.
  48. Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S., Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W., Wolf P.A.: Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: The Framingham Heart Study. Arch. Neurol., 2006; 63: 1545–1550.
Language: English
Page range: 837 - 846
Submitted on: Dec 18, 2020
Accepted on: Jun 7, 2021
Published on: Dec 13, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Katarzyna Stachowicz, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.