Dutta J., Dutta P.K., Rinki K. i wsp.: Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. W: Current Research and Developments on Chitin and Chitosan in Biomaterials Science, t.1, red.: R. Jayakumar, M. Prabaharan. Research Signpost, Palo Alto (CA) 2008, 167–186
Dolcimascolo A., Calabrese G., Conoci S., Parenti R.: Innovative biomaterials for tissue engineering. W: Biomaterial-Supported Tissue Reconstruction or Regeneration, red.: M. Barbeck, O. Jung, R. Smeets, T. Koržinskas. IntechOpen: Londyn 2019
Viana Ribeiro J.C., Vieira R.S., Melo I.M., Araújo V.M., Lima V.: Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration. Scient. World J., 2017; 2017: 8639898
Huang Y., Onyeri S., Siewe M., Moshfeghian A., Madihally S.V.: In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 2005; 26: 7616–7627
Aranaz I., Mengibar M., Harris R., Panos I., Miralles B., Acosta N., Galed G., Heras A.: Functional characterization of chitin and chitosan. Curr. Chem. Biol., 2009; 3: 203–230
Doench I., Tran T.A., David L., Montembault A., Viguier E., Gorz-elanny C., Sudre G., Cachon T., Louback-Mohamed M., Horbelt N. i wsp.: Cellulose nanofiber-reinforced chitosan hydrogel composites for intervertebral disc tissue repair. Biomimetics, 2019; 4: 19
Okamoto Y., Kawakami K., Miyatake K., Morimoto M., Shigemasa Y., Minami S.: Analgesic effects of chitin and chitosan. Carbohydr. Polym., 2002; 49: 249–252
Zhang H., Neau S.H.: In vitro degradation of chitosan by a commercial enzyme preparation: Effect of molecular weight and degree of deacetylation. Biomaterials, 2001; 22: 1653–1658
Zhu X., Chian K.S., Chan-Park M.B., Lee S.T.: Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J. Biomed. Mater. Res. A, 2005; 73: 264–274
Kean T., Thanou M.: Chitin and chitosan: Sources, production and medical applications. W: Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters, red.: P.A. Williams. RSC Publishing, London 2011, 292–318
Pangburn S.H., Trescony P.V., Heller J.: Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials., 1982; 3: 105–108
Laroche G., Marois Y., Guidoin R., King M.W., Martin L., How T., Douville Y.: Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res., 1995; 29: 1525–1536
Shao H.J., Chen C.S., Lee Y.T., Wang J.H., Young T.H.: The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan. J. Biomed. Mater. Res. A, 2010; 93: 1297–1305
Shao H.J., Lee Y.T., Chen C.S., Wang J.H., Young T.H.: Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials, 2010; 31: 4695–4705
Masuoka K., Ishihara M., Asazuma T., Hattori H., Matsui T., Ta-kase B., Kanatani Y., Fujita M., Saito Y., Yura H., Fujikawa K., Nemoto K.: The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials, 2005; 26: 3277–3284
Yang T.L., Young T.H.: Chitosan cooperates with mesenchyme-derived factors in regulating salivary gland epithelial morphogenesis. J. Cell. Mol. Med., 2009; 13: 2853–2863
Kojima K., Okamoto Y., Miyatake K., Fujise H., Shigemasa Y., Minami S.: Effects of chitin and chitosan on collagen synthesis in wound healing. J. Vet. Med. Sci., 2004; 66: 1595–1598
Zhu C., Fan D., Duan Z., Xue W., Shang L., Chen F., Luo Y.: Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J. Biomed. Mater. Res. A, 2009; 89: 829–840
Venkatesan J., Jayakumar R., Anil S., Chalisserry E.P., Pallela R., Kim S.K.: Development of alginate-chitosan-collagen based hydrogels for tissue engineering. J. Biomater. Tissue Eng., 2015; 5: 458–464
Boucard N., Viton C., Domard A.: New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 2005; 6: 3227–3237
Berger J., Reist M., Mayer J.M., Felt O., Gurny R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm., 2004; 57: 35–52
Wu X., Black L., Santacana-Laffitte G., Patrick C.W.Jr.: Preparation and assessment of glutaraldehyde-crosslinked collagen-chi-tosan hydrogels for adipose tissue engineering. J. Biomed. Mater. Res. A, 2007; 81: 59–65
Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H.: Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011; 29: 322–337
Kolhe P., Kannan R.M.: Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules, 2003; 4: 173–180
Zotkin M.A., Vikhoreva G., Kechek’yan A.S.: Thermal modification of chitosan films in the form of salts with various acids. Polym. Sci., Ser. B, 2004; 46: 359–363
Tang R., Du Y., Fan L.: Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. J. Polym. Sci. Part. B Polym. Phys., 2003; 41: 993–997
Aoyagi S., Onishi H., Machida Y.: Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int. J. Pharm., 2007; 330: 138–145
Hirano S., Zhang M., Nakagawa M., Miyata T.: Wet spun chi-tosan-collagen fibers, their chemical-N-modifications, and blond compatibility. Biomaterials, 2000; 21: 997–1003
Kim I.Y., Seo S.J., Moon H.S. Yoo M.K., Park I.Y., Kim B.C., Cho C.S.: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 2008; 26: 1–21
Sultankulov B., Berillo D., Sultankulova K., Tokay T., Saparov A.: Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules, 2019; 9: 470
Suh J.K., Matthew H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 2000; 21: 2589–2598
Rodríguez-Vázquez M., Vega-Ruiz B., Ramos-Zúñiga R., Saldaña-Koppel D.A., Quiñones-Olvera L.F.: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine.BioMed Res. Int., 2015; 2015: 821279
Grobler S., Perchyonok V., Mulder R., Moodley D.: Towards bioactive dental restorative materials with chitosan and nanodiamonds: Evaluation and application. Int. J. Dentistry Oral Sci., 2015; 2: 147–154
Park K.H., Kim S.J., Hwang M.J, Song H.J, Park Y.J.: Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid Polym. Sci., 2017; 295: 1843–1849
Peng L., Cheng X., Zhuo R., Lan J., Wang Y., Shi B., Li S.: Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. Biomed. Mater. Res. Part A, 2009; 90: 564–576
Malafaya P.B., Santos T.C., van Griensven M., Reis R.L.: Morphology, mechanical characterization and in vivo neo-vasculariza-tion of chitosan particle aggregated scaffolds architectures. Biomaterials, 2008; 29: 3914–3926
Nosrati H., Pourmotabed S., Sharifi E.: A review on some natural biopolymers and their applications in angiogenesis and tissue engineering. J. Appl. Biotech. Rep., 2018; 5: 81–91
Ishihara M., Obara K., Nakamura S., Fujita M., Masuoka K., Kanatani Y., Takase B., Hattori H., Morimoto Y., Ishihara M., Maehara T., Kikuchi M.: Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J. Artif. Organs., 2006; 9: 8–16
Kędzierska M., Miłowska K.: Zastosowanie biomateriałów na ba-zie chitozanu w leczeniu trudno gojących się ran. Postępy Hig. Med. Dośw., 2019; 73: 768–781
Hattori H., Ishihara M.: Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed. Mater., 2015; 10: 014015
Hu Z., Lu S., Cheng Y., Kong S., Li S., Li C., Yang L.: Investigation of the effects of molecular parameters on the hemostatic properties of chitosan. Molecules., 2018; 23: 3147
Shah A., Ali Buabeid M., Arafa E.A., Hussain I., Li L., Murtaza G.: The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxi-floxacin. Int. J. Pharm., 2019; 564: 22–38
Kucharska M., Struszczyk M.H., Niekraszewicz A., Ciechańska D., Witczak E., Tarkowska S., Fortuniak K., Gulbas-Diaz A., Ro-gaczewska A., Płoszaj I., Pluta A., Gąsiorowski T.: Tromboguard® - first aid wound dressing. Prog. Chem. Appl. Chitin Its Deriv., 2011; 16: 121–130
Shevchenko R.V., James S.L., James S.E.: A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface, 2010; 7: 229–258
Ma J., Wang H., He B., Chen J.: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001; 22: 331–336
Zakhem E., Raghavan S., Gilmont R.R., Bitar K.N.: Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials, 2012; 33: 4810–4817
Kafle P., Singh S.K., Sarkar I., Surin L.: Amniotic membrane transplantation with and without limbal stem cell transplantation in chemical eye injury. Nepal. J. Ophthalmol., 2015; 7: 52–55
Wang S., Liu W., Han B., Yang L.: Study on a hydroxypropyl chitosan-gelatin based scaffold for corneal stroma tissue engineering. Appl. Surf. Sci., 2009; 255: 8701–8705
Ozcelik B., Brown K.D., Blencowe A., Daniell M., Stevens G.W.,Qiao G.G.: Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater., 2013; 9: 6594–6605
Wang Y.H., Young T.H., Wang T.J.: Investigating the effect of chi-tosan/polycaprolactone blends in differentiation of corneal endothelial cells and extracellular matrix compositions. Exp. Eye Res., 2019; 185: 107679
Simões M.J., Gärtner A., Shirosaki Y., Gil da Costa R.M., Cortez P.P., Gartnёr F., Santos J.D., Lopes M.A., Geuna S., Varejão A.S., Mauricio A.C.: In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Act. Med. Port., 2011; 24: 43–52
Matsuda A., Kobayashi H., Itoh S., Kataoka K., Tanaka J.: Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials, 2005; 26: 2273–2279
Yuan Y., Zhang P., Yang Y., Wang X., Gu X.: The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 2004; 25: 4273–4278
Ma J., Wang H., He B., Chen J.: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001; 22: 331–336
Staroń A., Grabowska A., Jagusztyn-Krynicka E.K.: Nadproduk-cja i oczyszczanie rekombinowanych, heterologicznych białek w komórkach Escherichia coli. Post. Mikrobiol., 2008; 47: 83–95
Fisher A.K., Freedman B.G., Bevan D.R., Senger R.S.: A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput. Struct. Biotechol. J., 2014; 11: 91–99
Kaszowska M.: Chemical structure and biosynthesis of lipopolysaccharide – important component of the cell envelope of Gram negative bacteria. Postępy Hig. Med. Dośw., 2004; 58: 333–342
Pospiech E., Peltre G., Wąsowicz E., Jeleń H., Greaser M.L., Mikołajczak B., Bresińska A., Gorączka A.: Metody separacji i ocena rozdziałów: elektroforeza, wysokosprawna kolumnowa chromatografia cieczowa, chromatografia gazowa, spektroskopia masowa. W: Metody pomiarów i kontroli jakości w przemyśle spożywczym i biotechnologii, red.: Z. Kędzior, M. Jankiewicz, Akademia Rolnicza im. Augusta Cieszkowskiego. Wydział Technologii Żywności, Poznań 2003, 155–193
Rosiński M., Piasecka-Kwiatkowska D., Warchalewski J.R.: Przegląd metod separacji i oczyszczania białek przydatnych w badaniach i analizie żywności. Żywn. Nauka. Technol. Jakość, 2005; 3: 5–22
Zou P., Yang X., Wang J., Li Y., Yu H., Zhang Y., Liu G.: Advances in characterization and biological activities of chitosan and chitosan oligosaccharides. Food Chem., 2016; 190: 1174–1181
Radomski P., Piątkowski M., Bogdał D., Radmoski P., Jarosiński A.: Zastosowanie chitozanu oraz jego modyfikowanych pochod-nych do usuwania śladowych ilości metali ciężkich ze ścieków przemysłowych. Chemik, 2014; 68: 39–46
Tarsi R., Muzzarelli R.A., Guzman C.A., Pruzzo C.: Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. J. Dent. Res., 1997; 76: 665–672