Franklin C.C., Backos D.S., Mohar I., White C.C., Forman H.J., Kavanagh T.J.: Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med., 2009; 30: 86-98
Ferguson G., Bridge W.: Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Arch. Biochem. Biophys., 2016; 593: 12-23
Pompella A., Corti A., Paolicchi A., Giommarelli C., Zunino F.: γ-glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol., 2007; 7: 360-366
Franco R., Schoneveld O.J., Pappa A., Panayiotidis M.I.: The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem., 2007; 113: 234-258
Yang Y., Chen Y., Johansson E., Schneider S.N., Shertzer H.G., Nebert D.W., Dalton T.P.: Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochem. Pharmacol., 2007; 74: 372-381
Shi Z.Z., Osei-Frimpong J., Kala G., Kala S.V., Barrios R.J., Habib G.M., Lukin D.J., Danney C.M., Matzuk M.M., Lieberman M.W.: Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl. Acad. Sci. USA, 2000; 97: 5101-5106
Yang Y., Dieter M.Z., Chen Y., Shertzer H.G., Nebert D.W., Dalton T.P.: Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J. Biol. Chem., 2002; 277: 49446-49452
Liu R.M., Hu H., Robison T.W., Forman H.J.: Differential enhancement of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase by tert-butylhydroquinone in rat lung epithelial L2 cells. Am. J. Respir. Cell Mol. Biol., 1996; 14: 186-191
Cai J., Huang Z.Z., Lu S.C.: Differential regulation of γ-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem. J., 1997; 326: 167-172
Lu S.C., Kuhlenkamp J., Garcia-Ruiz C., Kaplowitz N.: Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat. J. Clin. Invest., 1991; 88: 260-269
Eaton D.L., Hamel D.M.: Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione. Toxicol. Appl. Pharmacol., 1994; 126: 145-149
Langston J.W., Li W., Harrison L., Aw T.Y.: Activation of promoter activity of the catalytic subunit of γ-glutamylcysteine ligase (GCL) in brain endothelial cells by insulin requires antioxidant response element 4 and altered glycemic status: Implication for GCL expression and GSH synthesis. Free Radic. Biol. Med., 2011; 51: 1749-1757
Chan K., Han X.D., Kan Y.W.: An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA, 2001; 98: 4611-4616
Huang C.S., Chang L.S., Anderson M.E., Meister A.: Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J. Biol. Chem., 1993; 268: 19675-19680
Tu Z., Anders M.W.: Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis. Biochem. J., 1998; 336: 675-680
Backos D.S., Fritz K.S., Roede J.R., Petersen D.R., Franklin C.C.: Posttranslational modification and regulation of glutamatecysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-non-enal. Free Radic. Biol. Med., 2011; 50: 14-26
Zhu M., Bowden G.T.: Molecular mechanism(s) for UV-B irradiation-induced glutathione depletion in cultured human keratinocytes. Photochem. Photobiol., 2004; 80: 191-196
Abdelmegeed M.A., Jang S., Banerjee A., Hardwick J.P., Song B.J.: Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury. Free Radic. Biol. Med., 2013; 60: 211-222
Braidy N., Zarka M., Jugder B.E., Welch J., Jayasena T., Chan D.K.Y., Sachdev P., Bridge W.: The precursor to glutathione (GSH), γ-Glutamylcysteine (GGC), can ameliorate oxidative damage and neuroinflammation induced by Aβ40 oligomers in human astrocytes. Front Aging Neurosci., 2019; 11: 177
Hamilton D., Wu J.H., Alaoui-Jamali M., Batist G.: A novel missense mutation in the γ-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production. Blood, 2003; 102: 725-730
Mañú Pereira M., Gelbart T., Ristoff E., Crain K.C., Bergua J.M., López Lafuente A., Kalko S.G., García Mateos E., Beutler E., Vives Corrons J.L.: Chronic non-spherocytic hemolytic anemia associated with severe neurological disease due to γ-glutamylcysteine synthetase deficiency in a patient of Moroccan origin. Haematologica, 2007; 92: e102-105
Pearce R.K., Owen A., Daniel S., Jenner P., Marsden C.D.: Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J. Neural. Transm., 1997; 104: 661-677
Feng W., Rosca M., Fan Y., Hu Y., Feng P., Lee H.G., Monnier V.M., Fan X.: Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum. Mol. Genet., 2017; 26: 1376-1390
Fernandez-Fernandez S., Bobo-Jimenez V., Requejo-Aguilar R., Gonzalez-Fernandez S., Resch M., Carabias-Carrasco M., Ros J., Almeida A., Bolaños J.P.: Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol., 2018; 19: 52-61
Liu R.M.: Down-regulation of γ-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. J. Neurosci. Res., 2002; 68: 344-351
Pessayre D., Fromenty B., Berson A., Robin M.A., Lettéron P., Moreau R., Mansouri A.: Central role of mitochondria in drug-induced liver injury. Drug Metab. Rev., 2012; 44: 34-87
Chen Y., Yang Y., Miller M.L., Shen D., Shertzer H.G., Stringer K.F., Wang B., Schneider S.N., Nebert D.W., Dalton T.P.: Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology, 2007; 45: 11181128
Jaeschke H., McGill M.R., Williams C.D., Ramachandran A.: Current issues with acetaminophen hepatotoxicity – a clinically relevant model to test the efficacy of natural products. Life Sci., 2011; 88: 737-745
Pervaiz S., Clement M.V.: Tumor intracellular redox status and drug resistance-serendipity or a causal relationship? Curr. Pharm. Des., 2004; 10: 1969-1977
Ballatori N., Krance S.M., Notenboom S., Shi S., Tieu K., Hammond C.L.: Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem., 2009; 390: 191-214
Traverso N., Ricciarelli R., Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C.: Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013; 2013: 972913
Jang J.H., Surh Y.J.: Bcl-2 attenuation of oxidative cell death is associated with up-regulation of γ-glutamylcysteine ligase via constitutive NF-κB activation. J. Biol. Chem., 2004; 279: 38779-38786
Järvinen K., Soini Y., Kahlos K., Kinnula V.L.: Overexpression of γ-glutamylcysteine synthetase in human malignant mesothelioma. Hum. Pathol., 2002; 33: 748-755
Kim A.D., Zhang R., Han X., Kang K.A., Piao M.J., Maeng Y.H., Chang W.Y., Hyun J.W.: Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol. Med. Rep., 2015; 12: 4314-4319
Nguyen A., Loo J.M., Mital R., Weinberg E.M., Man F.Y., Zeng Z., Paty P.B., Saltz L., Janjigian Y.Y., de Stanchina E., Tavazoie S.F.: PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis. J. Clin. Invest., 2016; 126: 681-694
Sun J., Zhou C., Ma Q., Chen W., Atyah M., Yin Y., Fu P., Liu S., Hu B., Ren N., Zhou H.: High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J. Cancer., 2019; 10: 3333-3343
Fiorillo M., Sotgia F., Sisci D., Cappello A.R., Lisanti M.P.: Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget, 2017; 8: 20309-20327
Lin L.C., Chen C.F., Ho C.T., Liu J.J., Liu T.Z., Chern C.L.: γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells. Life Sci., 2018; 198: 25-31
Liu C.W., Hua K.T., Li K.C., Kao H.F., Hong R.L., Ko J.Y., Hsiao M., Kuo M.L., Tan C.T.: Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate-cysteine ligase catalytic subunit in head and neck squamous cell carcinoma. Mol. Cancer Ther., 2017; 16: 1421-1434
Chen Y., Johansson E., Yang Y., Miller M.L., Shen D., Orlicky D.J., Shertzer H.G., Vasiliou V., Nebert D.W., Dalton T.P.: Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclcknockout mice, providing a model for hepatic cirrhosis. J. Hepatol., 2010; 53: 1085-1094
Rushworth G.F., Megson I.L.: Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014; 141: 150-159
Du K., Ramachandran A., Jaeschke H.: Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016; 10: 148-156
Kobayashi H., Kurokawa T., Kitahara S., Nonami T., Harada A., Nakao A., Sugiyama S., Ozawa T., Takagi H.: The effects of gamma-glutamylcysteine ethyl ester, a prodrug of glutathione, on ischemia-reperfusion-induced liver injury in rats. Transplantation, 1992; 54: 414-418
Le T.M., Jiang H., Cunningham G.R., Magarik J.A., Barge W.S., Cato M.C., Farina M., Rocha J.B., Milatovic D., Lee E. i wsp.: γ-Glutamylcysteine ameliorates oxidative injury in neurons and astrocytes in vitro and increases brain glutathione in vivo. Neurotoxicology, 2011; 32: 518-525
Yang Y., Li L., Hang Q., Fang Y., Dong X., Cao P., Yin Z., Luo L.: γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol., 2019; 20: 157-166
Salama S.A., Arab H.H., Hassan M.H., Al Robaian M.M., Maghrabi I.A.: Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J. Trace. Elem. Med. Biol., 2019; 52: 74-82
Salama S.A., Arab H.H., Maghrabi I.A., Hassan M.H., AlSaeed M.S.: Gamma-glutamyl cysteine attenuates tissue damage and enhances tissue regeneration in a rat model of lead-induced nephrotoxicity. Biol. Trace Elem. Res., 2016; 173: 96-107