Sánchez-Martínez R., Castillo A.I., Steinmeyer A., Aranda A.: The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep., 2006; 7: 1030-1034
Mangelsdorf D.J., Borgmeyer U., Heyman R.A., Zhou J.Y., Ong E.S., Oro A.E., Kakizuka A., Evans R.M.: Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev., 1992; 6: 329-344
Hanish B.J., Hackney Price J.F., Kaneko I., Ma N., van der Vaart A., Wagner C.E., Jurutka P.W., Marshall P.A.: A novel gene expression analytics-based approach to structure aided design of rexinoids for development as next-generation cancer therapeutics. Steroids, 2018; 135: 36-49
Kersten S., Kelleher D., Chambon P., Gronemeyer H., Noy N.: Retinoid X receptor alpha forms tetramers in solution. Proc. Natl. Acad. Sci. USA, 1995; 92: 8645-8649
Tanaka T., Suh K.S., Lo A.M., De Luca L.M.: p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: Pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer. J. Biol. Chem., 2007; 282: 29987-29997
Núñez V., Alameda D., Rico D., Mota R., Gonzalo P., Cedenilla M., Fischer T., Boscá L., Glass C.K., Arroyo A.G., Ricote M.: Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. USA, 2010; 107: 10626-10631
Chen H., Privalsky M.L.: Cooperative formation of high-order oligomers by retinoid X receptors: An unexpected mode of DNA recognition. Proc. Natl. Acad. Sci. USA, 1995; 92: 422-426
Mark M., Ghyselinck N.B., Chambon P.: Function of retinoid nuclear receptors: Lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol., 2006; 46: 451-480
Sadasivuni M.K., Reddy B.M., Singh J., Anup M.O., Sunil V., Lakshmi M.N., Yogeshwari S., Chacko S.K., Pooja T.L., Dandu A., Harish C., Gopala A.S., Pratibha S., Naveenkumar B.S., Pallavi P.M. i wsp.: CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models. Diabetol. Metab. Syndr., 2014; 6: 83
Széles L., Póliska S., Nagy G., Szatmari I., Szanto A., Pap A., Lindstedt M., Santegoets S.J., Rühl R., Dezsö B., Nagy L.: Research resource: Transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol. Endocrinol., 2010; 24: 2218-2231
Kim H.T., Kong G., DeNardo D., Li Y., Uray I., Pal S., Mohsin S., Hilsenbeck S.G., Bissonnette R., Lamph W.W., Johnson K., Brown P.H.: Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res., 2006; 66: 12009-12018
Prüfer K., Barsony J.: Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol., 2002; 16: 1738-1751
Kumar R., Thompson E.B.: Transactivation functions of the Nterminal domains of nuclear hormone receptors: Protein folding and coactivator interactions. Mol. Endocrinol., 2003; 17: 1-10
Andersen R.J., Mawji N.R., Wang J., Wang G., Haile S., Myung J.K., Watt K., Tam T., Yang Y.C., Bañuelos C.A., Williams D.E., McEwan I.J., Wang Y., Sadar M.D.: Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the aminoterminus domain of the androgen receptor. Cancer Cell, 2010; 17: 535-546
Ahuja H.S., Szanto A., Nagy L., Davies P.J.: The retinoid X receptor and its ligands: Versatile regulators of metabolic function, cell differentiation and cell death. J. Biol. Regul. Homeost. Agents, 2003; 17: 29-45
Bastien J., Adam-Stitah S., Plassat J.L., Chambon P., Rochette-Egly C.: The phosphorylation site located in the A region of retinoic X receptor α is required for the antiproliferative effect of retinoic acid (RA) and the activation of RA target genes in F9 cells. J. Biol. Chem., 2002; 277: 28683-28689
Choi S.J., Chung S.S., Rho E.J., Lee H.W., Lee M.H., Choi H.S., Seol J.H., Baek S.H., Bang O.S., Chung C.H.: Negative modulation of RXRα transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J. Biol. Chem., 2006; 281: 30669-30677
Sołtys K., Ożyhar A.: Ordered structure-forming properties of the intrinsically disordered AB region of hRXRγ and its ability to promote liquid-liquid phase separation. J. Steroid Biochem. Mol. Biol., 2020; 198: 105571
Alberti S., Gladfelter A., Mittag T.: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019; 176: 419-434
Patel A., Lee H.O., Jawerth L., Maharana S., Jahnel M., Hein M.Y., Stoynov S., Mahamid J., Saha S., Franzmann T.M., Pozniakovski A., Poser I., Maghelli N., Royer L.A., Weigert M. i wsp.: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015; 162: 1066-1077
Boija A., Klein I.A., Sabari B.R., Dall’Agnese A., Coffey E.L., Zamudio A.V., Li C.H., Shrinivas K., Manteiga J.C., Hannett N.M., Abraham B.J., Afeyan L.K., Guo Y.E., Rimel J.K., Fant C.B. i wsp.: Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018; 175: 1842-1855. e16
Kumar R., Johnson B.H., Thompson E.B.: Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem., 2004; 40: 27-39
Wilson T.E., Paulsen R.E., Padgett K.A., Milbrandt J.: Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science, 1992; 256: 107-110
Zechel C., Shen X.Q., Chambon P., Gronemeyer H.: Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J., 1994; 13: 1414-1424
Zechel C., Shen X.Q., Chen J.Y., Chen Z.P., Chambon P., Gronemeyer H.: The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J., 1994; 13: 1425-1433
Black B.E., Holaska J.M., Rastinejad F., Paschal B.M.: DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol., 2001; 11: 1749-1758
Dash A.K., Yende A.S., Jaiswal B., Tyagi R.K.: Heterodimerization of retinoid X receptor with xenobiotic receptor partners occurs in the cytoplasmic compartment: Mechanistic insights of events in living cells. Exp. Cell Res., 2017; 360: 337-346
García P., Lorenzo P., de Lera A.R.: Natural ligands of RXR receptors. In: Retinoid Signaling Pathways, ed.: E. Pohl. Academic Press, Cambridge MA 2020, 209-234
Kovalevich J., Yen W., Ozdemir A., Langford D.: Cocaine induces nuclear export and degradation of neuronal retinoid X receptor-γ via a TNF-α/JNK- mediated mechanism. J. neuroimmune Pharmacol., 2015; 10: 55-73
Zomer A.W., van Der Burg B., Jansen G.A., Wanders R.J., Poll-The B.T., van Der Saag P.T.: Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J. Lipid Res., 2000; 41: 18011807
Bruck N., Bastien J., Bour G., Tarrade A., Plassat J.L., Bauer A., Adam-Stitah S., Rochette-Egly C.: Phosphorylation of the retinoid X receptor at the omega loop, modulates the expression of retinoic-acid-target genes with a promoter context specificity. Cell. Signal., 2005; 17: 1229-1239
Germain P., Chambon P., Eichele G., Evans R.M., Lazar M.A., Leid M., De Lera A.R., Lotan R., Mangelsdorf D.J., Gronemeyer H.: International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev., 2006; 58: 760-772
Cao X., Liu W., Lin F., Li H., Kolluri S.K., Lin B., Han Y.H., Dawson M.I., Zhang X.K.: Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol. Cell. Biol., 2004; 24: 9705-9725
Matsushima-Nishiwaki R., Okuno M., Adachi S., Sano T., Akita K., Moriwaki H., Friedman S.L., Kojima S.: Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res., 2001; 61: 7675-7682
Solomon C., White J.H., Kremer R.: Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor α. J. Clin. Invest., 1999; 103: 1729-1735
Arnold S.L., Amory J.K., Walsh T.J., Isoherranen N.: A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J. Lipid Res., 2012; 53: 587-598
de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., Perlmann T.: Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 2000; 290: 2140-2144
Lengqvist J., Mata De Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., Griffiths W.J.: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol. Cell. Proteomics, 2004; 3: 692-703
Mic F.A., Molotkov A., Benbrook D.M., Duester G.: Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc. Natl. Acad. Sci. USA, 2003; 100: 7135-7140
Wietrzych-Schindler M., Szyszka-Niagolov M., Ohta K., Endo Y., Pérez E., de Lera A.R., Chambon P., Krezel W.: Retinoid X receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol. Psychiatry, 2011; 69: 788-794
Lo Van A., Sakayori N., Hachem M., Belkouch M., Picq M., Lagarde M., Osumi N., Bernoud-Hubac N.: Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie, 2016; 130: 163-167
Rühl R., Krzyżosiak A., Niewiadomska-Cimicka A., Rochel N., Széles L., Vaz B., Wietrzych-Schindler M., Álvarez S., Szklenár M., Nagy L., de Lera A.R., Krężel W.: 9-cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLOS Genet., 2015; 11: e1005213
Harmon M.A., Boehm M.F., Heyman R.A., Mangelsdorf D.J.: Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proc. Natl. Acad. Sci. USA, 1995; 92: 61576160
Hiebl V., Ladurner A., Latkolik S., Dirsch V.M.: Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv., 2018; 36: 1657-1698
Shen D., Yu X., Wu Y., Chen Y., Li G., Cheng F., Xia L.: Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev. Anticancer Ther., 2018; 18: 487-499
Szanto A., Narkar V., Shen Q., Uray I.P., Davies P.J.A., Nagy L.: Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004; 11: 126-143
Wan Y.J., An D., Cai Y., Repa J.J., Hung-Po Chen T., Flores M., Postic C., Magnuson M.A., Chen J., Chien K.R., French S., Mangelsdorf D.J., Sucov H.M.: Hepatocyte-specific mutation establishes retinoid X receptor α as a heterodimeric integrator of multiple physiological processes in the liver. Mol. Cell. Biol., 2000; 20: 4436-4444
Lu T.T., Makishima M., Repa J.J., Schoonjans K., Kerr T.A., Auwerx J., Mangelsdorf D.J.: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 2000; 6: 507-515
Dobrzyn P., Dobrzyn A., Miyazaki M., Cohen P., Asilmaz E., Hardie D.G., Friedman J.M., Ntambi J.M.: Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. USA, 2004; 101: 6409-6414
Dziewulska A., Dobosz A.M., Dobrzyn A., Smolinska A., Kolczynska K., Ntambi J.M., Dobrzyn P.: SCD1 regulates the AMPK/ SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. J. Cell. Physiol., 2020; 235: 1129-1140
Chang S.C., Rashid A., Gao Y.T., Andreotti G., Shen M.C., Wang B.S., Han T.Q., Zhang B.H., Sakoda L.C., Leitzmann M.F., Chen B.E., Rosenberg P.S., Chen J., Chanock S.J., Hsing A.W.: Polymorphism of genes related to insulin sensitivity and the risk of biliary tract cancer and biliary stone: A population-based case-control study in Shanghai, China. Carcinogenesis, 2008; 29: 944-948
Wang H., Chu W., Hemphill C., Hasstedt S.J., Elbein S.C.: Mutation screening and association of human retinoid X receptor γ variation with lipid levels in familial type 2 diabetes. Mol. Genet. Metab., 2002; 76: 14-22
Nohara A., Kawashiri M.A., Claudel T., Mizuno M., Tsuchida M., Takata M., Katsuda S., Miwa K., Inazu A., Kuipers F., Kobayashi J., Koizumi J., Yamagishi M., Mabuchi H.: High frequency of a retinoid X receptor γ gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol., 2007; 27: 923-928
Shi H., Yu X., Li Q., Ye X., Gao Y., Ma J., Cheng J., Lu Y., Du W., Du J., Ye Q., Zhao X., Zhou L.: Association between PPAR-γ and RXR-α gene polymorphism and metabolic syndrome risk: A case-control study of a Chinese Han population. Arch. Med. Res., 2012; 43: 233-242
Baldassarro V.A., Krężel W., Fernández M., Schuhbaur B., Giardino L., Calzà L.: The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res., 2019; 37: 101443
Tanaka T., Dancheck B.L., Trifiletti L.C., Birnkrant R.E., Taylor B.J., Garfield S.H., Thorgeirsson U., De Luca L.M.: Altered localization of retinoid X receptor α coincides with loss of retinoid responsiveness in human breast cancer MDA-MB-231 cells. Mol. Cell. Biol., 2004; 24: 3972-3982
Zhong C., Yang S., Huang J., Cohen M.B., Roy-Burman P.: Aberration in the expression of the retinoid receptor, RXRα, in prostate cancer. Cancer Biol. Ther., 2003; 2: 179-184
Crowe D.L., Chandraratna R.A.: A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res., 2004; 6: R546-R555
Ando N., Shimizu M., Okuno M., Matsushima-Nishiwaki R., Tsurumi H., Tanaka T., Moriwaki H.: Expression of retinoid X receptor alpha is decreased in 3’-methyl-4-dimethylaminoazobenzene-induced hepatocellular carcinoma in rats. Oncol. Rep., 2007; 18: 879-884
Takiyama Y., Miyokawa N., Sugawara A., Kato S., Ito K., Sato K., Oikawa K., Kobayashi H., Kimura S., Tateno M.: Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J. Clin. Endocrinol. Metab., 2004; 89: 5851-5861
Huang G.L., Zhang W., Ren H.Y., Shen X.Y., Chen Q.X., Shen D.Y.: Retinoid X receptor α enhances human cholangiocarcinoma growth through simultaneous activation of Wnt/β-catenin and nuclear factor-κB pathways. Cancer Sci., 2015; 106: 1515-1523
Zhu J., Nasr R., Pérès L., Riaucoux-Lormière F., Honoré N., Berthier C., Kamashev D., Zhou J., Vitoux D., Lavau C., de Thé H.: RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell, 2007; 12: 23-35
Zhou H., Liu W., Su Y., Wei Z., Liu J., Kolluri S.K., Wu H., Cao Y., Chen J., Wu Y., Yan T., Cao X., Gao W., Molotkov A., Jiang F. i wsp.: NSAID sulindac and its analog bind RXRα and inhibit RXRα-dependent AKT signaling. Cancer Cell, 2010; 17: 560-573