Have a personal or library account? Click to login

RXR – centralny regulator wielu ścieżek sygnałowych w organizmie

Open Access
|Oct 2021

References

  1. Sladek F.M.: What are nuclear receptor ligands? Mol. Cell. Endocrinol., 2011; 334: 3-13
  2. Młynarczuk J., Rękawiecki R.: The role of the orphan receptor SF-1 in the development and function of the ovary. Reprod. Biol., 2010; 10: 177-193
  3. Sánchez-Martínez R., Castillo A.I., Steinmeyer A., Aranda A.: The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep., 2006; 7: 1030-1034
  4. Lefebvre P., Benomar Y., Staels B.: Retinoid X receptors: Common heterodimerization partners with distinct functions. Trends Endocrinol. Metab., 2010; 21: 676-683
  5. Skerrett R., Malm T., Landreth G.: Nuclear receptors in neurodegenerative diseases. Neurobiol. Dis., 2014; 72: 104-116
  6. Mangelsdorf D.J., Ong E.S., Dyck J.A., Evans R.M.: Nuclear receptor that identifies a novel retinoic acid response pathway. Nature, 1990; 345: 224-229
  7. Heyman R.A., Mangelsdorf D.J., Dyck J.A., Stein R.B., Eichele G., Evans R.M., Thaller C.: 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell, 1992; 68: 397-406
  8. Mangelsdorf D.J., Borgmeyer U., Heyman R.A., Zhou J.Y., Ong E.S., Oro A.E., Kakizuka A., Evans R.M.: Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev., 1992; 6: 329-344
  9. Rowe A.: Retinoid X receptors. Int. J. Biochem. Cell Biol., 1997; 29: 275-278
  10. Aranda A., Pascual A.: Nuclear hormone receptors and gene expression. Physiol. Rev., 2001; 81: 1269-1304
  11. McKenna N.J., O’Malley B.W.: Combinatorial control of gene expression by nuclear receptors and coregulators. Cell, 2002; 108: 465-474
  12. Hanish B.J., Hackney Price J.F., Kaneko I., Ma N., van der Vaart A., Wagner C.E., Jurutka P.W., Marshall P.A.: A novel gene expression analytics-based approach to structure aided design of rexinoids for development as next-generation cancer therapeutics. Steroids, 2018; 135: 36-49
  13. Yasmin R., Yeung K.T., Chung R.H., Gaczynska M.E., Osmulski P.A., Noy N.: DNA-looping by RXR tetramers permits transcriptional regulation “at a distance”. J. Mol. Biol., 2004; 343: 327-338
  14. Shulman A.I., Larson C., Mangelsdorf D.J., Ranganathan R.: Structural determinants of allosteric ligand activation in RXR heterodimers. Cell, 2004; 116: 417-429
  15. Westin S., Kurokawa R., Nolte R.T., Wisely G.B., McInerney E.M., Rose D.W., Milburn M.V., Rosenfeld M.G., Glass C.K.: Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature, 1998; 395: 199-202
  16. Germain P., Iyer J., Zechel C., Gronemeyer H.: Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature, 2002; 415: 187-192
  17. Zhang X.K., Lehmann J., Hoffmann B., Dawson M.I., Cameron J., Graupner G., Hermann T., Tran P., Pfahl M.: Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature, 1992; 358: 587-591
  18. Kersten S., Kelleher D., Chambon P., Gronemeyer H., Noy N.: Retinoid X receptor alpha forms tetramers in solution. Proc. Natl. Acad. Sci. USA, 1995; 92: 8645-8649
  19. Tanaka T., Suh K.S., Lo A.M., De Luca L.M.: p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: Pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer. J. Biol. Chem., 2007; 282: 29987-29997
  20. Núñez V., Alameda D., Rico D., Mota R., Gonzalo P., Cedenilla M., Fischer T., Boscá L., Glass C.K., Arroyo A.G., Ricote M.: Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. USA, 2010; 107: 10626-10631
  21. Chen H., Privalsky M.L.: Cooperative formation of high-order oligomers by retinoid X receptors: An unexpected mode of DNA recognition. Proc. Natl. Acad. Sci. USA, 1995; 92: 422-426
  22. Mark M., Ghyselinck N.B., Chambon P.: Function of retinoid nuclear receptors: Lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol., 2006; 46: 451-480
  23. Chiang J.Y.: Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr. Rev., 2002; 23: 443-463
  24. Sadasivuni M.K., Reddy B.M., Singh J., Anup M.O., Sunil V., Lakshmi M.N., Yogeshwari S., Chacko S.K., Pooja T.L., Dandu A., Harish C., Gopala A.S., Pratibha S., Naveenkumar B.S., Pallavi P.M. i wsp.: CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models. Diabetol. Metab. Syndr., 2014; 6: 83
  25. Széles L., Póliska S., Nagy G., Szatmari I., Szanto A., Pap A., Lindstedt M., Santegoets S.J., Rühl R., Dezsö B., Nagy L.: Research resource: Transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol. Endocrinol., 2010; 24: 2218-2231
  26. Kim H.T., Kong G., DeNardo D., Li Y., Uray I., Pal S., Mohsin S., Hilsenbeck S.G., Bissonnette R., Lamph W.W., Johnson K., Brown P.H.: Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res., 2006; 66: 12009-12018
  27. Prüfer K., Barsony J.: Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol., 2002; 16: 1738-1751
  28. Chambon P.: A decade of molecular biology of retinoic acid receptors. FASEB J., 1996; 10: 940-954
  29. Rochette-Egly C.: Nuclear receptors: Integration of multiple signalling pathways through phosphorylation. Cell. Signal., 2003; 15: 355-366
  30. Wärnmark A., Treuter E., Wright A.P., Gustafsson J.A.: Activation functions 1 and 2 of nuclear receptors: Molecular strategies for transcriptional activation. Mol. Endocrinol., 2003; 17: 1901-1909
  31. Kumar R., Thompson E.B.: Transactivation functions of the Nterminal domains of nuclear hormone receptors: Protein folding and coactivator interactions. Mol. Endocrinol., 2003; 17: 1-10
  32. Fernandez E.J.: Allosteric pathways in nuclear receptors – Potential targets for drug design. Pharmacol. Ther., 2018; 183: 152-159
  33. Andersen R.J., Mawji N.R., Wang J., Wang G., Haile S., Myung J.K., Watt K., Tam T., Yang Y.C., Bañuelos C.A., Williams D.E., McEwan I.J., Wang Y., Sadar M.D.: Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the aminoterminus domain of the androgen receptor. Cancer Cell, 2010; 17: 535-546
  34. Anbalagan M., Huderson B., Murphy L., Rowan B.G.: Post-translational modifications of nuclear receptors and human disease. Nucl. Recept. Signal., 2012; 10: e001
  35. Ahuja H.S., Szanto A., Nagy L., Davies P.J.: The retinoid X receptor and its ligands: Versatile regulators of metabolic function, cell differentiation and cell death. J. Biol. Regul. Homeost. Agents, 2003; 17: 29-45
  36. Egea P.F., Mitschler A., Moras D.: Molecular recognition of agonist ligands by RXRs. Mol. Endocrinol., 2002; 16: 987-997
  37. Adam-Stitah S., Penna L., Chambon P., Rochette-Egly C.: Hyperphosphorylation of the retinoid X receptor α by activated c-Jun NH2-terminal kinases. J. Biol. Chem., 1999; 274: 18932-18941
  38. Bastien J., Adam-Stitah S., Plassat J.L., Chambon P., Rochette-Egly C.: The phosphorylation site located in the A region of retinoic X receptor α is required for the antiproliferative effect of retinoic acid (RA) and the activation of RA target genes in F9 cells. J. Biol. Chem., 2002; 277: 28683-28689
  39. Choi S.J., Chung S.S., Rho E.J., Lee H.W., Lee M.H., Choi H.S., Seol J.H., Baek S.H., Bang O.S., Chung C.H.: Negative modulation of RXRα transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J. Biol. Chem., 2006; 281: 30669-30677
  40. Sołtys K., Ożyhar A.: Ordered structure-forming properties of the intrinsically disordered AB region of hRXRγ and its ability to promote liquid-liquid phase separation. J. Steroid Biochem. Mol. Biol., 2020; 198: 105571
  41. Alberti S., Gladfelter A., Mittag T.: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019; 176: 419-434
  42. Alberti S., Dormann D.: Liquid-liquid phase separation in disease. Annu. Rev. Genet., 2019; 53: 171-194
  43. Patel A., Lee H.O., Jawerth L., Maharana S., Jahnel M., Hein M.Y., Stoynov S., Mahamid J., Saha S., Franzmann T.M., Pozniakovski A., Poser I., Maghelli N., Royer L.A., Weigert M. i wsp.: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015; 162: 1066-1077
  44. Boija A., Klein I.A., Sabari B.R., Dall’Agnese A., Coffey E.L., Zamudio A.V., Li C.H., Shrinivas K., Manteiga J.C., Hannett N.M., Abraham B.J., Afeyan L.K., Guo Y.E., Rimel J.K., Fant C.B. i wsp.: Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018; 175: 1842-1855. e16
  45. Kumar R., Johnson B.H., Thompson E.B.: Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem., 2004; 40: 27-39
  46. Gronemeyer H., Miturski R.: Molecular mechanisms of retinoid action. Cell. Mol. Biol. Lett., 2001; 6: 3-52
  47. Wilson T.E., Paulsen R.E., Padgett K.A., Milbrandt J.: Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science, 1992; 256: 107-110
  48. Zechel C., Shen X.Q., Chambon P., Gronemeyer H.: Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J., 1994; 13: 1414-1424
  49. Zechel C., Shen X.Q., Chen J.Y., Chen Z.P., Chambon P., Gronemeyer H.: The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J., 1994; 13: 1425-1433
  50. Black B.E., Holaska J.M., Rastinejad F., Paschal B.M.: DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol., 2001; 11: 1749-1758
  51. Jacobs C.M., Paulsen R.E.: Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B. Biochem. Biophys. Res. Commun., 2005; 336: 646-652
  52. Dash A.K., Yende A.S., Jaiswal B., Tyagi R.K.: Heterodimerization of retinoid X receptor with xenobiotic receptor partners occurs in the cytoplasmic compartment: Mechanistic insights of events in living cells. Exp. Cell Res., 2017; 360: 337-346
  53. García P., Lorenzo P., de Lera A.R.: Natural ligands of RXR receptors. In: Retinoid Signaling Pathways, ed.: E. Pohl. Academic Press, Cambridge MA 2020, 209-234
  54. Hsieh J.C., Whitfield G.K., Jurutka P.W., Haussler C.A., Thatcher M.L., Thompson P.D., Dang H.T., Galligan M.A., Oza A.K., Haussler M.R.: Two basic amino acids C-terminal of the proximal box specify functional binding of the vitamin D receptor to its rat osteocalcin deoxyribonucleic acid-responsive element. Endocrinology, 2003; 144: 5065-5080
  55. Kovalevich J., Yen W., Ozdemir A., Langford D.: Cocaine induces nuclear export and degradation of neuronal retinoid X receptor-γ via a TNF-α/JNK- mediated mechanism. J. neuroimmune Pharmacol., 2015; 10: 55-73
  56. Zomer A.W., van Der Burg B., Jansen G.A., Wanders R.J., Poll-The B.T., van Der Saag P.T.: Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J. Lipid Res., 2000; 41: 18011807
  57. de Lera Á.R., Krezel W., Rühl R.: An endogenous mammalian retinoid X receptor ligand, at last! ChemMedChem, 2016; 11: 1027-1037
  58. Laudet V., Gronemeyer H.: The Nuclear Receptor FactsBook. Academic Press, Cambridge MA 2002
  59. Bruck N., Bastien J., Bour G., Tarrade A., Plassat J.L., Bauer A., Adam-Stitah S., Rochette-Egly C.: Phosphorylation of the retinoid X receptor at the omega loop, modulates the expression of retinoic-acid-target genes with a promoter context specificity. Cell. Signal., 2005; 17: 1229-1239
  60. Germain P., Chambon P., Eichele G., Evans R.M., Lazar M.A., Leid M., De Lera A.R., Lotan R., Mangelsdorf D.J., Gronemeyer H.: International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev., 2006; 58: 760-772
  61. Bastien J., Rochette-Egly C.: Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene, 2004; 328: 1-16
  62. de Almeida N.R., Conda-Sheridan M.: A review of the molecular design and biological activities of RXR agonists. Med. Res. Rev., 2019; 39: 1372-1397
  63. Kojetin D.J., Matta-Camacho E., Hughes T.S., Srinivasan S., Nwachukwu J.C., Cavett V., Nowak J., Chalmers M.J., Marciano D.P., Kamenecka T.M., Shulman A.I., Rance M., Griffin P.R., Bruning J.B., Nettles K.W.: Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat. Commun., 2015; 6: 8013
  64. Lee H.Y., Suh Y.A., Robinson M.J., Clifford J.L., Hong W.K., Woodgett J.R., Cobb M.H., Mangelsdorf D.J., Kurie J.M.: Stress pathway activation induces phosphorylation of retinoid X receptor. J. Biol. Chem., 2000; 275: 32193-32199
  65. Cao X., Liu W., Lin F., Li H., Kolluri S.K., Lin B., Han Y.H., Dawson M.I., Zhang X.K.: Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol. Cell. Biol., 2004; 24: 9705-9725
  66. Matsushima-Nishiwaki R., Okuno M., Adachi S., Sano T., Akita K., Moriwaki H., Friedman S.L., Kojima S.: Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res., 2001; 61: 7675-7682
  67. Solomon C., White J.H., Kremer R.: Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor α. J. Clin. Invest., 1999; 103: 1729-1735
  68. Glass C.K.: Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr. Rev., 1994; 15: 391-407
  69. Rosenfeld M.G., Glass C.K.: Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem., 2001; 276: 3686536868
  70. Perissi V., Staszewski L.M., McInerney E.M., Kurokawa R., Krones A., Rose D.W., Lambert M.H., Milburn M.V., Glass C.K., Rosenfeld M.G.: Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev., 1999; 13: 3198-3208
  71. Wolffe A.P., Pruss D.: Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell, 1996; 84: 817-819
  72. Shulman A.I., Mangelsdorf D.J.: Retinoid X receptor heterodimers in the metabolic syndrome. N. Engl. J. Med., 2005; 353: 604-615
  73. Heery D.M., Kalkhoven E., Hoare S., Parker M.G.: A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997; 387: 733-736
  74. Krężel W., Rühl R., de Lera A.R.: Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol., 2019; 491: 110436
  75. Arnold S.L., Amory J.K., Walsh T.J., Isoherranen N.: A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J. Lipid Res., 2012; 53: 587-598
  76. Cheng C., Michaels J., Scheinfeld N.: Alitretinoin: A comprehensive review. Expert Opin. Investig. Drugs, 2008; 17: 437-443
  77. de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., Perlmann T.: Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 2000; 290: 2140-2144
  78. Lengqvist J., Mata De Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., Griffiths W.J.: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol. Cell. Proteomics, 2004; 3: 692-703
  79. Mic F.A., Molotkov A., Benbrook D.M., Duester G.: Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc. Natl. Acad. Sci. USA, 2003; 100: 7135-7140
  80. Wallen-Mackenzie A., Mata de Urquiza A., Petersson S., Rodriguez F.J., Friling S., Wagner J., Ordentlich P., Lengqvist J., Heyman R.A., Arenas E., Perlmann T.: Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev., 2003; 17: 3036-3047
  81. Wietrzych-Schindler M., Szyszka-Niagolov M., Ohta K., Endo Y., Pérez E., de Lera A.R., Chambon P., Krezel W.: Retinoid X receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol. Psychiatry, 2011; 69: 788-794
  82. Lo Van A., Sakayori N., Hachem M., Belkouch M., Picq M., Lagarde M., Osumi N., Bernoud-Hubac N.: Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie, 2016; 130: 163-167
  83. Lemotte P.K., Keidel S., Apfel C.M.: Phytanic acid is a retinoid X receptor ligand. Eur. J. Biochem., 1996; 236: 328-333
  84. Rühl R., Krzyżosiak A., Niewiadomska-Cimicka A., Rochel N., Széles L., Vaz B., Wietrzych-Schindler M., Álvarez S., Szklenár M., Nagy L., de Lera A.R., Krężel W.: 9-cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLOS Genet., 2015; 11: e1005213
  85. Harmon M.A., Boehm M.F., Heyman R.A., Mangelsdorf D.J.: Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proc. Natl. Acad. Sci. USA, 1995; 92: 61576160
  86. Hiebl V., Ladurner A., Latkolik S., Dirsch V.M.: Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv., 2018; 36: 1657-1698
  87. Shen D., Yu X., Wu Y., Chen Y., Li G., Cheng F., Xia L.: Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev. Anticancer Ther., 2018; 18: 487-499
  88. Tousi B.: The emerging role of bexarotene in the treatment of Alzheimer’s disease: Current evidence. Neuropsychiatr. Dis. Treat., 2015; 11: 311-315
  89. Szanto A., Narkar V., Shen Q., Uray I.P., Davies P.J.A., Nagy L.: Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004; 11: 126-143
  90. Wan Y.J., An D., Cai Y., Repa J.J., Hung-Po Chen T., Flores M., Postic C., Magnuson M.A., Chen J., Chien K.R., French S., Mangelsdorf D.J., Sucov H.M.: Hepatocyte-specific mutation establishes retinoid X receptor α as a heterodimeric integrator of multiple physiological processes in the liver. Mol. Cell. Biol., 2000; 20: 4436-4444
  91. Lu T.T., Repa J.J., Mangelsdorf D.J.: Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J. Biol. Chem., 2001; 276: 37735-37738
  92. Lu T.T., Makishima M., Repa J.J., Schoonjans K., Kerr T.A., Auwerx J., Mangelsdorf D.J.: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 2000; 6: 507-515
  93. Repa J.J., Turley S.D., Lobaccaro J.A., Medina J., Li L., Lustig K., Shan B., Heyman R.A., Dietschy J.M., Mangelsdorf D.J.: Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science, 2000; 289: 1524-1529
  94. Picard F., Auwerx J.: PPARγ and glucose homeostasis. Annu. Rev. Nutr., 2002; 22: 167-197
  95. Dobrzyn P., Dobrzyn A., Miyazaki M., Cohen P., Asilmaz E., Hardie D.G., Friedman J.M., Ntambi J.M.: Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. USA, 2004; 101: 6409-6414
  96. Dziewulska A., Dobosz A.M., Dobrzyn A., Smolinska A., Kolczynska K., Ntambi J.M., Dobrzyn P.: SCD1 regulates the AMPK/ SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. J. Cell. Physiol., 2020; 235: 1129-1140
  97. Chang S.C., Rashid A., Gao Y.T., Andreotti G., Shen M.C., Wang B.S., Han T.Q., Zhang B.H., Sakoda L.C., Leitzmann M.F., Chen B.E., Rosenberg P.S., Chen J., Chanock S.J., Hsing A.W.: Polymorphism of genes related to insulin sensitivity and the risk of biliary tract cancer and biliary stone: A population-based case-control study in Shanghai, China. Carcinogenesis, 2008; 29: 944-948
  98. Wang H., Chu W., Hemphill C., Hasstedt S.J., Elbein S.C.: Mutation screening and association of human retinoid X receptor γ variation with lipid levels in familial type 2 diabetes. Mol. Genet. Metab., 2002; 76: 14-22
  99. Nohara A., Kawashiri M.A., Claudel T., Mizuno M., Tsuchida M., Takata M., Katsuda S., Miwa K., Inazu A., Kuipers F., Kobayashi J., Koizumi J., Yamagishi M., Mabuchi H.: High frequency of a retinoid X receptor γ gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol., 2007; 27: 923-928
  100. Shi H., Yu X., Li Q., Ye X., Gao Y., Ma J., Cheng J., Lu Y., Du W., Du J., Ye Q., Zhao X., Zhou L.: Association between PPAR-γ and RXR-α gene polymorphism and metabolic syndrome risk: A case-control study of a Chinese Han population. Arch. Med. Res., 2012; 43: 233-242
  101. Baldassarro V.A., Krężel W., Fernández M., Schuhbaur B., Giardino L., Calzà L.: The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res., 2019; 37: 101443
  102. Chiang M.Y., Misner D., Kempermann G., Schikorski T., Giguère V., Sucov H.M., Gage F.H., Stevens C.F., Evans R.M.: An essential role for retinoid receptors RARβ and RXRγ in longterm potentiation and depression. Neuron, 1998; 21: 1353-1361
  103. Huang J.K., Jarjour A.A., Nait Oumesmar B., Kerninon C., Williams A., Krezel W., Kagechika H., Bauer J., Zhao C., Baron-Van Evercooren A., Chambon P., Ffrench-Constant C., Franklin R.J.: Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat. Neurosci., 2011; 14: 45-53
  104. Tanaka T., Dancheck B.L., Trifiletti L.C., Birnkrant R.E., Taylor B.J., Garfield S.H., Thorgeirsson U., De Luca L.M.: Altered localization of retinoid X receptor α coincides with loss of retinoid responsiveness in human breast cancer MDA-MB-231 cells. Mol. Cell. Biol., 2004; 24: 3972-3982
  105. Zhong C., Yang S., Huang J., Cohen M.B., Roy-Burman P.: Aberration in the expression of the retinoid receptor, RXRα, in prostate cancer. Cancer Biol. Ther., 2003; 2: 179-184
  106. Crowe D.L., Chandraratna R.A.: A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res., 2004; 6: R546-R555
  107. Ando N., Shimizu M., Okuno M., Matsushima-Nishiwaki R., Tsurumi H., Tanaka T., Moriwaki H.: Expression of retinoid X receptor alpha is decreased in 3’-methyl-4-dimethylaminoazobenzene-induced hepatocellular carcinoma in rats. Oncol. Rep., 2007; 18: 879-884
  108. Takiyama Y., Miyokawa N., Sugawara A., Kato S., Ito K., Sato K., Oikawa K., Kobayashi H., Kimura S., Tateno M.: Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J. Clin. Endocrinol. Metab., 2004; 89: 5851-5861
  109. Huang G.L., Zhang W., Ren H.Y., Shen X.Y., Chen Q.X., Shen D.Y.: Retinoid X receptor α enhances human cholangiocarcinoma growth through simultaneous activation of Wnt/β-catenin and nuclear factor-κB pathways. Cancer Sci., 2015; 106: 1515-1523
  110. Zhu J., Nasr R., Pérès L., Riaucoux-Lormière F., Honoré N., Berthier C., Kamashev D., Zhou J., Vitoux D., Lavau C., de Thé H.: RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell, 2007; 12: 23-35
  111. Zhang X., Zhou H., Su Y.: Targeting truncated RXRα for cancer therapy. Acta Biochim. Biophys. Sin., 2016; 48: 49-59
  112. Zhou H., Liu W., Su Y., Wei Z., Liu J., Kolluri S.K., Wu H., Cao Y., Chen J., Wu Y., Yan T., Cao X., Gao W., Molotkov A., Jiang F. i wsp.: NSAID sulindac and its analog bind RXRα and inhibit RXRα-dependent AKT signaling. Cancer Cell, 2010; 17: 560-573
Language: English
Page range: 511 - 528
Submitted on: Jul 26, 2020
Accepted on: Apr 7, 2021
Published on: Oct 21, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Katarzyna Sołtys, Bartosz Leszczyński, Andrzej Ożyhar, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.