References
- Sladek F.M.: What are nuclear receptor ligands? Mol. Cell. Endocrinol., 2011; 334: 3-13
- Młynarczuk J., Rękawiecki R.: The role of the orphan receptor SF-1 in the development and function of the ovary. Reprod. Biol., 2010; 10: 177-193
- Sánchez-Martínez R., Castillo A.I., Steinmeyer A., Aranda A.: The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep., 2006; 7: 1030-1034
- Lefebvre P., Benomar Y., Staels B.: Retinoid X receptors: Common heterodimerization partners with distinct functions. Trends Endocrinol. Metab., 2010; 21: 676-683
- Skerrett R., Malm T., Landreth G.: Nuclear receptors in neurodegenerative diseases. Neurobiol. Dis., 2014; 72: 104-116
- Mangelsdorf D.J., Ong E.S., Dyck J.A., Evans R.M.: Nuclear receptor that identifies a novel retinoic acid response pathway. Nature, 1990; 345: 224-229
- Heyman R.A., Mangelsdorf D.J., Dyck J.A., Stein R.B., Eichele G., Evans R.M., Thaller C.: 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell, 1992; 68: 397-406
- Mangelsdorf D.J., Borgmeyer U., Heyman R.A., Zhou J.Y., Ong E.S., Oro A.E., Kakizuka A., Evans R.M.: Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev., 1992; 6: 329-344
- Rowe A.: Retinoid X receptors. Int. J. Biochem. Cell Biol., 1997; 29: 275-278
- Aranda A., Pascual A.: Nuclear hormone receptors and gene expression. Physiol. Rev., 2001; 81: 1269-1304
- McKenna N.J., O’Malley B.W.: Combinatorial control of gene expression by nuclear receptors and coregulators. Cell, 2002; 108: 465-474
- Hanish B.J., Hackney Price J.F., Kaneko I., Ma N., van der Vaart A., Wagner C.E., Jurutka P.W., Marshall P.A.: A novel gene expression analytics-based approach to structure aided design of rexinoids for development as next-generation cancer therapeutics. Steroids, 2018; 135: 36-49
- Yasmin R., Yeung K.T., Chung R.H., Gaczynska M.E., Osmulski P.A., Noy N.: DNA-looping by RXR tetramers permits transcriptional regulation “at a distance”. J. Mol. Biol., 2004; 343: 327-338
- Shulman A.I., Larson C., Mangelsdorf D.J., Ranganathan R.: Structural determinants of allosteric ligand activation in RXR heterodimers. Cell, 2004; 116: 417-429
- Westin S., Kurokawa R., Nolte R.T., Wisely G.B., McInerney E.M., Rose D.W., Milburn M.V., Rosenfeld M.G., Glass C.K.: Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature, 1998; 395: 199-202
- Germain P., Iyer J., Zechel C., Gronemeyer H.: Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature, 2002; 415: 187-192
- Zhang X.K., Lehmann J., Hoffmann B., Dawson M.I., Cameron J., Graupner G., Hermann T., Tran P., Pfahl M.: Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature, 1992; 358: 587-591
- Kersten S., Kelleher D., Chambon P., Gronemeyer H., Noy N.: Retinoid X receptor alpha forms tetramers in solution. Proc. Natl. Acad. Sci. USA, 1995; 92: 8645-8649
- Tanaka T., Suh K.S., Lo A.M., De Luca L.M.: p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: Pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer. J. Biol. Chem., 2007; 282: 29987-29997
- Núñez V., Alameda D., Rico D., Mota R., Gonzalo P., Cedenilla M., Fischer T., Boscá L., Glass C.K., Arroyo A.G., Ricote M.: Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. USA, 2010; 107: 10626-10631
- Chen H., Privalsky M.L.: Cooperative formation of high-order oligomers by retinoid X receptors: An unexpected mode of DNA recognition. Proc. Natl. Acad. Sci. USA, 1995; 92: 422-426
- Mark M., Ghyselinck N.B., Chambon P.: Function of retinoid nuclear receptors: Lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol., 2006; 46: 451-480
- Chiang J.Y.: Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr. Rev., 2002; 23: 443-463
- Sadasivuni M.K., Reddy B.M., Singh J., Anup M.O., Sunil V., Lakshmi M.N., Yogeshwari S., Chacko S.K., Pooja T.L., Dandu A., Harish C., Gopala A.S., Pratibha S., Naveenkumar B.S., Pallavi P.M. i wsp.: CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models. Diabetol. Metab. Syndr., 2014; 6: 83
- Széles L., Póliska S., Nagy G., Szatmari I., Szanto A., Pap A., Lindstedt M., Santegoets S.J., Rühl R., Dezsö B., Nagy L.: Research resource: Transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol. Endocrinol., 2010; 24: 2218-2231
- Kim H.T., Kong G., DeNardo D., Li Y., Uray I., Pal S., Mohsin S., Hilsenbeck S.G., Bissonnette R., Lamph W.W., Johnson K., Brown P.H.: Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res., 2006; 66: 12009-12018
- Prüfer K., Barsony J.: Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol., 2002; 16: 1738-1751
- Chambon P.: A decade of molecular biology of retinoic acid receptors. FASEB J., 1996; 10: 940-954
- Rochette-Egly C.: Nuclear receptors: Integration of multiple signalling pathways through phosphorylation. Cell. Signal., 2003; 15: 355-366
- Wärnmark A., Treuter E., Wright A.P., Gustafsson J.A.: Activation functions 1 and 2 of nuclear receptors: Molecular strategies for transcriptional activation. Mol. Endocrinol., 2003; 17: 1901-1909
- Kumar R., Thompson E.B.: Transactivation functions of the Nterminal domains of nuclear hormone receptors: Protein folding and coactivator interactions. Mol. Endocrinol., 2003; 17: 1-10
- Fernandez E.J.: Allosteric pathways in nuclear receptors – Potential targets for drug design. Pharmacol. Ther., 2018; 183: 152-159
- Andersen R.J., Mawji N.R., Wang J., Wang G., Haile S., Myung J.K., Watt K., Tam T., Yang Y.C., Bañuelos C.A., Williams D.E., McEwan I.J., Wang Y., Sadar M.D.: Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the aminoterminus domain of the androgen receptor. Cancer Cell, 2010; 17: 535-546
- Anbalagan M., Huderson B., Murphy L., Rowan B.G.: Post-translational modifications of nuclear receptors and human disease. Nucl. Recept. Signal., 2012; 10: e001
- Ahuja H.S., Szanto A., Nagy L., Davies P.J.: The retinoid X receptor and its ligands: Versatile regulators of metabolic function, cell differentiation and cell death. J. Biol. Regul. Homeost. Agents, 2003; 17: 29-45
- Egea P.F., Mitschler A., Moras D.: Molecular recognition of agonist ligands by RXRs. Mol. Endocrinol., 2002; 16: 987-997
- Adam-Stitah S., Penna L., Chambon P., Rochette-Egly C.: Hyperphosphorylation of the retinoid X receptor α by activated c-Jun NH2-terminal kinases. J. Biol. Chem., 1999; 274: 18932-18941
- Bastien J., Adam-Stitah S., Plassat J.L., Chambon P., Rochette-Egly C.: The phosphorylation site located in the A region of retinoic X receptor α is required for the antiproliferative effect of retinoic acid (RA) and the activation of RA target genes in F9 cells. J. Biol. Chem., 2002; 277: 28683-28689
- Choi S.J., Chung S.S., Rho E.J., Lee H.W., Lee M.H., Choi H.S., Seol J.H., Baek S.H., Bang O.S., Chung C.H.: Negative modulation of RXRα transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J. Biol. Chem., 2006; 281: 30669-30677
- Sołtys K., Ożyhar A.: Ordered structure-forming properties of the intrinsically disordered AB region of hRXRγ and its ability to promote liquid-liquid phase separation. J. Steroid Biochem. Mol. Biol., 2020; 198: 105571
- Alberti S., Gladfelter A., Mittag T.: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019; 176: 419-434
- Alberti S., Dormann D.: Liquid-liquid phase separation in disease. Annu. Rev. Genet., 2019; 53: 171-194
- Patel A., Lee H.O., Jawerth L., Maharana S., Jahnel M., Hein M.Y., Stoynov S., Mahamid J., Saha S., Franzmann T.M., Pozniakovski A., Poser I., Maghelli N., Royer L.A., Weigert M. i wsp.: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015; 162: 1066-1077
- Boija A., Klein I.A., Sabari B.R., Dall’Agnese A., Coffey E.L., Zamudio A.V., Li C.H., Shrinivas K., Manteiga J.C., Hannett N.M., Abraham B.J., Afeyan L.K., Guo Y.E., Rimel J.K., Fant C.B. i wsp.: Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018; 175: 1842-1855. e16
- Kumar R., Johnson B.H., Thompson E.B.: Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem., 2004; 40: 27-39
- Gronemeyer H., Miturski R.: Molecular mechanisms of retinoid action. Cell. Mol. Biol. Lett., 2001; 6: 3-52
- Wilson T.E., Paulsen R.E., Padgett K.A., Milbrandt J.: Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science, 1992; 256: 107-110
- Zechel C., Shen X.Q., Chambon P., Gronemeyer H.: Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J., 1994; 13: 1414-1424
- Zechel C., Shen X.Q., Chen J.Y., Chen Z.P., Chambon P., Gronemeyer H.: The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J., 1994; 13: 1425-1433
- Black B.E., Holaska J.M., Rastinejad F., Paschal B.M.: DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol., 2001; 11: 1749-1758
- Jacobs C.M., Paulsen R.E.: Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B. Biochem. Biophys. Res. Commun., 2005; 336: 646-652
- Dash A.K., Yende A.S., Jaiswal B., Tyagi R.K.: Heterodimerization of retinoid X receptor with xenobiotic receptor partners occurs in the cytoplasmic compartment: Mechanistic insights of events in living cells. Exp. Cell Res., 2017; 360: 337-346
- García P., Lorenzo P., de Lera A.R.: Natural ligands of RXR receptors. In: Retinoid Signaling Pathways, ed.: E. Pohl. Academic Press, Cambridge MA 2020, 209-234
- Hsieh J.C., Whitfield G.K., Jurutka P.W., Haussler C.A., Thatcher M.L., Thompson P.D., Dang H.T., Galligan M.A., Oza A.K., Haussler M.R.: Two basic amino acids C-terminal of the proximal box specify functional binding of the vitamin D receptor to its rat osteocalcin deoxyribonucleic acid-responsive element. Endocrinology, 2003; 144: 5065-5080
- Kovalevich J., Yen W., Ozdemir A., Langford D.: Cocaine induces nuclear export and degradation of neuronal retinoid X receptor-γ via a TNF-α/JNK- mediated mechanism. J. neuroimmune Pharmacol., 2015; 10: 55-73
- Zomer A.W., van Der Burg B., Jansen G.A., Wanders R.J., Poll-The B.T., van Der Saag P.T.: Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J. Lipid Res., 2000; 41: 18011807
- de Lera Á.R., Krezel W., Rühl R.: An endogenous mammalian retinoid X receptor ligand, at last! ChemMedChem, 2016; 11: 1027-1037
- Laudet V., Gronemeyer H.: The Nuclear Receptor FactsBook. Academic Press, Cambridge MA 2002
- Bruck N., Bastien J., Bour G., Tarrade A., Plassat J.L., Bauer A., Adam-Stitah S., Rochette-Egly C.: Phosphorylation of the retinoid X receptor at the omega loop, modulates the expression of retinoic-acid-target genes with a promoter context specificity. Cell. Signal., 2005; 17: 1229-1239
- Germain P., Chambon P., Eichele G., Evans R.M., Lazar M.A., Leid M., De Lera A.R., Lotan R., Mangelsdorf D.J., Gronemeyer H.: International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev., 2006; 58: 760-772
- Bastien J., Rochette-Egly C.: Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene, 2004; 328: 1-16
- de Almeida N.R., Conda-Sheridan M.: A review of the molecular design and biological activities of RXR agonists. Med. Res. Rev., 2019; 39: 1372-1397
- Kojetin D.J., Matta-Camacho E., Hughes T.S., Srinivasan S., Nwachukwu J.C., Cavett V., Nowak J., Chalmers M.J., Marciano D.P., Kamenecka T.M., Shulman A.I., Rance M., Griffin P.R., Bruning J.B., Nettles K.W.: Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat. Commun., 2015; 6: 8013
- Lee H.Y., Suh Y.A., Robinson M.J., Clifford J.L., Hong W.K., Woodgett J.R., Cobb M.H., Mangelsdorf D.J., Kurie J.M.: Stress pathway activation induces phosphorylation of retinoid X receptor. J. Biol. Chem., 2000; 275: 32193-32199
- Cao X., Liu W., Lin F., Li H., Kolluri S.K., Lin B., Han Y.H., Dawson M.I., Zhang X.K.: Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol. Cell. Biol., 2004; 24: 9705-9725
- Matsushima-Nishiwaki R., Okuno M., Adachi S., Sano T., Akita K., Moriwaki H., Friedman S.L., Kojima S.: Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res., 2001; 61: 7675-7682
- Solomon C., White J.H., Kremer R.: Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor α. J. Clin. Invest., 1999; 103: 1729-1735
- Glass C.K.: Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr. Rev., 1994; 15: 391-407
- Rosenfeld M.G., Glass C.K.: Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem., 2001; 276: 3686536868
- Perissi V., Staszewski L.M., McInerney E.M., Kurokawa R., Krones A., Rose D.W., Lambert M.H., Milburn M.V., Glass C.K., Rosenfeld M.G.: Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev., 1999; 13: 3198-3208
- Wolffe A.P., Pruss D.: Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell, 1996; 84: 817-819
- Shulman A.I., Mangelsdorf D.J.: Retinoid X receptor heterodimers in the metabolic syndrome. N. Engl. J. Med., 2005; 353: 604-615
- Heery D.M., Kalkhoven E., Hoare S., Parker M.G.: A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997; 387: 733-736
- Krężel W., Rühl R., de Lera A.R.: Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol., 2019; 491: 110436
- Arnold S.L., Amory J.K., Walsh T.J., Isoherranen N.: A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J. Lipid Res., 2012; 53: 587-598
- Cheng C., Michaels J., Scheinfeld N.: Alitretinoin: A comprehensive review. Expert Opin. Investig. Drugs, 2008; 17: 437-443
- de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., Perlmann T.: Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 2000; 290: 2140-2144
- Lengqvist J., Mata De Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., Griffiths W.J.: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol. Cell. Proteomics, 2004; 3: 692-703
- Mic F.A., Molotkov A., Benbrook D.M., Duester G.: Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc. Natl. Acad. Sci. USA, 2003; 100: 7135-7140
- Wallen-Mackenzie A., Mata de Urquiza A., Petersson S., Rodriguez F.J., Friling S., Wagner J., Ordentlich P., Lengqvist J., Heyman R.A., Arenas E., Perlmann T.: Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev., 2003; 17: 3036-3047
- Wietrzych-Schindler M., Szyszka-Niagolov M., Ohta K., Endo Y., Pérez E., de Lera A.R., Chambon P., Krezel W.: Retinoid X receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol. Psychiatry, 2011; 69: 788-794
- Lo Van A., Sakayori N., Hachem M., Belkouch M., Picq M., Lagarde M., Osumi N., Bernoud-Hubac N.: Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie, 2016; 130: 163-167
- Lemotte P.K., Keidel S., Apfel C.M.: Phytanic acid is a retinoid X receptor ligand. Eur. J. Biochem., 1996; 236: 328-333
- Rühl R., Krzyżosiak A., Niewiadomska-Cimicka A., Rochel N., Széles L., Vaz B., Wietrzych-Schindler M., Álvarez S., Szklenár M., Nagy L., de Lera A.R., Krężel W.: 9-cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLOS Genet., 2015; 11: e1005213
- Harmon M.A., Boehm M.F., Heyman R.A., Mangelsdorf D.J.: Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proc. Natl. Acad. Sci. USA, 1995; 92: 61576160
- Hiebl V., Ladurner A., Latkolik S., Dirsch V.M.: Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv., 2018; 36: 1657-1698
- Shen D., Yu X., Wu Y., Chen Y., Li G., Cheng F., Xia L.: Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev. Anticancer Ther., 2018; 18: 487-499
- Tousi B.: The emerging role of bexarotene in the treatment of Alzheimer’s disease: Current evidence. Neuropsychiatr. Dis. Treat., 2015; 11: 311-315
- Szanto A., Narkar V., Shen Q., Uray I.P., Davies P.J.A., Nagy L.: Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004; 11: 126-143
- Wan Y.J., An D., Cai Y., Repa J.J., Hung-Po Chen T., Flores M., Postic C., Magnuson M.A., Chen J., Chien K.R., French S., Mangelsdorf D.J., Sucov H.M.: Hepatocyte-specific mutation establishes retinoid X receptor α as a heterodimeric integrator of multiple physiological processes in the liver. Mol. Cell. Biol., 2000; 20: 4436-4444
- Lu T.T., Repa J.J., Mangelsdorf D.J.: Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J. Biol. Chem., 2001; 276: 37735-37738
- Lu T.T., Makishima M., Repa J.J., Schoonjans K., Kerr T.A., Auwerx J., Mangelsdorf D.J.: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 2000; 6: 507-515
- Repa J.J., Turley S.D., Lobaccaro J.A., Medina J., Li L., Lustig K., Shan B., Heyman R.A., Dietschy J.M., Mangelsdorf D.J.: Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science, 2000; 289: 1524-1529
- Picard F., Auwerx J.: PPARγ and glucose homeostasis. Annu. Rev. Nutr., 2002; 22: 167-197
- Dobrzyn P., Dobrzyn A., Miyazaki M., Cohen P., Asilmaz E., Hardie D.G., Friedman J.M., Ntambi J.M.: Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. USA, 2004; 101: 6409-6414
- Dziewulska A., Dobosz A.M., Dobrzyn A., Smolinska A., Kolczynska K., Ntambi J.M., Dobrzyn P.: SCD1 regulates the AMPK/ SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. J. Cell. Physiol., 2020; 235: 1129-1140
- Chang S.C., Rashid A., Gao Y.T., Andreotti G., Shen M.C., Wang B.S., Han T.Q., Zhang B.H., Sakoda L.C., Leitzmann M.F., Chen B.E., Rosenberg P.S., Chen J., Chanock S.J., Hsing A.W.: Polymorphism of genes related to insulin sensitivity and the risk of biliary tract cancer and biliary stone: A population-based case-control study in Shanghai, China. Carcinogenesis, 2008; 29: 944-948
- Wang H., Chu W., Hemphill C., Hasstedt S.J., Elbein S.C.: Mutation screening and association of human retinoid X receptor γ variation with lipid levels in familial type 2 diabetes. Mol. Genet. Metab., 2002; 76: 14-22
- Nohara A., Kawashiri M.A., Claudel T., Mizuno M., Tsuchida M., Takata M., Katsuda S., Miwa K., Inazu A., Kuipers F., Kobayashi J., Koizumi J., Yamagishi M., Mabuchi H.: High frequency of a retinoid X receptor γ gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol., 2007; 27: 923-928
- Shi H., Yu X., Li Q., Ye X., Gao Y., Ma J., Cheng J., Lu Y., Du W., Du J., Ye Q., Zhao X., Zhou L.: Association between PPAR-γ and RXR-α gene polymorphism and metabolic syndrome risk: A case-control study of a Chinese Han population. Arch. Med. Res., 2012; 43: 233-242
- Baldassarro V.A., Krężel W., Fernández M., Schuhbaur B., Giardino L., Calzà L.: The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res., 2019; 37: 101443
- Chiang M.Y., Misner D., Kempermann G., Schikorski T., Giguère V., Sucov H.M., Gage F.H., Stevens C.F., Evans R.M.: An essential role for retinoid receptors RARβ and RXRγ in longterm potentiation and depression. Neuron, 1998; 21: 1353-1361
- Huang J.K., Jarjour A.A., Nait Oumesmar B., Kerninon C., Williams A., Krezel W., Kagechika H., Bauer J., Zhao C., Baron-Van Evercooren A., Chambon P., Ffrench-Constant C., Franklin R.J.: Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat. Neurosci., 2011; 14: 45-53
- Tanaka T., Dancheck B.L., Trifiletti L.C., Birnkrant R.E., Taylor B.J., Garfield S.H., Thorgeirsson U., De Luca L.M.: Altered localization of retinoid X receptor α coincides with loss of retinoid responsiveness in human breast cancer MDA-MB-231 cells. Mol. Cell. Biol., 2004; 24: 3972-3982
- Zhong C., Yang S., Huang J., Cohen M.B., Roy-Burman P.: Aberration in the expression of the retinoid receptor, RXRα, in prostate cancer. Cancer Biol. Ther., 2003; 2: 179-184
- Crowe D.L., Chandraratna R.A.: A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res., 2004; 6: R546-R555
- Ando N., Shimizu M., Okuno M., Matsushima-Nishiwaki R., Tsurumi H., Tanaka T., Moriwaki H.: Expression of retinoid X receptor alpha is decreased in 3’-methyl-4-dimethylaminoazobenzene-induced hepatocellular carcinoma in rats. Oncol. Rep., 2007; 18: 879-884
- Takiyama Y., Miyokawa N., Sugawara A., Kato S., Ito K., Sato K., Oikawa K., Kobayashi H., Kimura S., Tateno M.: Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J. Clin. Endocrinol. Metab., 2004; 89: 5851-5861
- Huang G.L., Zhang W., Ren H.Y., Shen X.Y., Chen Q.X., Shen D.Y.: Retinoid X receptor α enhances human cholangiocarcinoma growth through simultaneous activation of Wnt/β-catenin and nuclear factor-κB pathways. Cancer Sci., 2015; 106: 1515-1523
- Zhu J., Nasr R., Pérès L., Riaucoux-Lormière F., Honoré N., Berthier C., Kamashev D., Zhou J., Vitoux D., Lavau C., de Thé H.: RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell, 2007; 12: 23-35
- Zhang X., Zhou H., Su Y.: Targeting truncated RXRα for cancer therapy. Acta Biochim. Biophys. Sin., 2016; 48: 49-59
- Zhou H., Liu W., Su Y., Wei Z., Liu J., Kolluri S.K., Wu H., Cao Y., Chen J., Wu Y., Yan T., Cao X., Gao W., Molotkov A., Jiang F. i wsp.: NSAID sulindac and its analog bind RXRα and inhibit RXRα-dependent AKT signaling. Cancer Cell, 2010; 17: 560-573