References
- Ahmed, M., Rauf, M., Mukhtar, Z., and Saeed, N. (2017). Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 24, 26983 − 26987. DOI:10.1007/s11356-017-0589-7.
- Asaithambi, P., Yesuf, M., Rajendran, G., and Alemayehu, E. (2023). Combined ozone, photo, and electrocoagulation technologies-An innovative technique for treatment of distillery industrial wastewater. Environmental Engineering Research, 29(2), 230042. DOI:10.4491/eer.2023.042.
- Bezuneh, T. and Kebede, E. (2015). Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. Journal of Environment and Earth Science, 5, 41 − 46.
- Bhardwaj, D., Ansari, M., Sahoo, R., and Tuteja, N. (2014). Bio-fertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. DOI:10.1186/1475-2859-13-66.
- Cao, H., Liu, J., Ma, S., Wu, X., Fu, Y., and Gao, Y. (2024). Selection of suitable organic amendments to balance agricultural economic benefits and carbon sequestration. Plants, 13(17), 2428. DOI:10.3390/plants13172428.
- Clauser, N., González, G., Mendieta, C., Kruyeniski, J., Area, M., and Vallejos, M. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability, 13(2), 794. DOI:10.3390/su13020794.
- Coulibaly, T., Du, J. and Diakité, D. (2021). Sustainable agricultural practices adoption. Agriculture (Poľnohospodárstvo), 67(4), 166 − 176. DOI:10.2478/agri-2021-0015.
- Daniel, A., Fadaka, A., Gokul, A., Bakare, O., Aina, O., Fisher, S., Burt, A., Mavumengwana, V., Keyster, M., and Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10(6), 1220. DOI:10.3390/micro-organisms10061220.
- Duque-Acevedo, M., Belmonte-Ureña, L., Cortés-García, F., and Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902. DOI:10.1016/j.gecco.2020.e00902.
- El-Mogy, M., Abdelaziz, S., Mahmoud, A., Elsayed, T. Abdel-Kader, N., and Mohamed, M. (2020). Comparative effects of different organic and inorganic fertilisers on soil fertility, plant growth, soil microbial community, and storage ability of lettuce. Agriculture (Poľnohospodárstvo), 66(3), 87 − 107. DOI:10.2478/agri-2020-0009.
- España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., and Alzate-Gaviria, L. (2011). Vinasses: Characterization and treatments. Waste Management and Research, 29(12), 1235 – 1250. DOI:10.1177/0734242X10387313.
- Fillaudeau, L., Bories, A. and Decloux, M. (2008). Brewing, winemaking and distilling: An overview of wastewater treatment and utilization schemes. In Klemeš, J., Smith, R., Kim, J. (Eds.) Handbook of Water and Energy Management in Food Processing, 1st ed. Cambridge: Woodhead Ltd., pp. 929 – 995.
- Fitz-Gibbon, F., Singh, D., McMullan, G., and Marchant, R. (1998). The effect of phenolic acids and molasses spent wash concentrations of distillery wastewater remediation by fungi. Process Biochemistry, 33(8), 799 – 803. DOI:10.1016/S0032-9592(98)00050-8.
- Gillman, G. P. and Sumpter, E. A. (1986). Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research, 24, 61 − 66. DOI:10.1071/SR9860061.
- Guerini Filho, M., Lumi, M., Hasan, C., Marder, M., Leite, L., and Konrad, O. (2018). Energy recovery from wine sector wastes: A study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustainable Energy Technologies and Assessments, 29, 44 − 49. DOI:10.1016/j.seta.2018.06.006.
- Gurreri, L., Tamburini, A., Cipollina, A., and Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(7), 146. DOI:10.3390/membranes10070146.
- Halvorsen, I. and Skogestad, S. (2011). Energy efficient distillation. Journal of Natural Gas Science and Engineering, 3(4), 571 – 580. DOI:10.1016/j.jngse.2011.06.002.
- Iakovlieva, A., Boichenko, S., Lejda, K., Vovk, O., and Shkilniuk, I. (2017). Vacuum distillation of rapeseed oil esters for production of jet fuel bio-additives. Procedia Engineering, 187, 363 – 370. DOI:10.1016/j.proeng.2017.04.387.
- Khaleel, R., Reddy, K. and Overcash, M. (1981). Changes in soil physical properties due to organic waste applications: A review. Journal of Environmental Quality, 10, 133 − 141. DOI:10.2134/jeq1981.00472425001000020002x.
- Khodkam, H., Pourdarbani, R., Ghaebi, H., and Hernandez-Hernandez, M. (2024). Investigating the environmental impacts of different approaches of agricultural waste management using AHP technique. Acta Technologica Agriculturae, 27(4), 242 − 250. DOI:10.2478/ata-2024-0032.
- Kuznetsov, I., Ruchay, N., Lembovich, A., and Sazanovets, M. (2010). Analysis of world experience in post-alcohol distillery dreg processing technology. Trudy BSTU, 4(18), 294 − 301 (in Russian /Analiz mirovogo opyta v tekhnologii pererabotki poslespirtovoj bardy/).
- Larney, F. and Angers, D. (2012). The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 92(1), 19 − 38. DOI:10.4141/cjss2010-064.
- Larramendy, M. and Soloneski, S. (2021). Soil Contamination – Threats and Sustainable Solutions. London: Intech Open, 298 p. Avaiable at: https://www.intechopen.com/books/9843.
- Lončarić, A., Patljak, M., Blažević, A., Jozinović, A., Babić, J., Šubarić, D., Pichler, A., Flanjak, I., Kujundžić, T., and Miličević, B. (2022). Changes in volatile compounds during grape brandy production from ‘Cabernet sauvignon’ and ‘Syrah’ grape varieties. Processes, 10(5), 988. DOI:10.3390/pr10050988.
- Maicas, S. and Mateo, J. (2020). Sustainability of wine production. Sustainability, 12(2), 559. DOI:10.3390/su12020559.
- Maina, S., Kachrimanidou, V., and Koutinas, A. (2017). A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 8, 18 – 23. DOI:10.1016/j.cogsc.2017.07.007.
- Montanarella, L., Panagos, P. and Yigini, Y. (2013). Soil Resources of Mediterranean and Caucasus Countries – Extension of the European Soil Database. Joint Research Centre: Institute for Environment and Sustainability, Publications Office. DOI:10.2788/91322.
- Mikucka, W., Zielinska, M., Bulkowska, K., and Witonska, I. 2022. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. Journal of Environmental Management, 318, 115548. DOI:10.1016/j.jenvman.2022.115548.
- Patel, S., Lee, B., Westerhoff, P., and Elimelech, M. (2024). The potential of electrodialysis as a cost-effective alternative to reverse osmosis for brackish water desalination. Water Research, 250, 121009. DOI:10.1016/j.watres.2023.121009.
- Puglia, D., Pezzolla, D., Gigliotti, G., Torre, L., Bartucca, M., and Del Buono, D. (2021). The opportunity of valorizing agricultural waste, through its conversion into bio-stimulants, biofertilizers, and biopolymers. Sustainability, 13(5), 2710. DOI:10.3390/su13052710.
- Ranta, S., Rastogi, S. and Kumar, R. (2021). Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, 290, 112544. DOI:10.1016/j.jenvman.2021.112544.
- Sahakyan, S., Petevotyan, R. and Yedoyan, T. (2021). An efficient technology for wastewater treatment and desalination: Case study. In Rybnov, E., Akimov, P., Khalvashi, M., Vardanyan, E. (Eds.) Contemporary Problems of Architecture and Construction, 1st ed. London: CRC Press, pp. 385 − 390.
- Sahakyan, S., Yedoyan, T., Sukiasyan, T., Baghdagyulyan, A., and Bakunts, S. (2023). Basic issues of brandy industry waste conservation. Geomatics and Environmental Engineering, 17(5), 45 − 60. DOI:10.7494/geom.2023.17.5.45.
- Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, 8(2), e08905. DOI:10.1016/j.heliyon.2022.e08905.
- Sharma, N. and Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675 – 679. DOI:10.5958/2230-732X.2017.00083.3.
- Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755. DOI:10.1016/j.biortech.2020.122755.
- Singh, M., Dotaniya, M., Mishra, A., Dotaniya, C., Regar, K., and Lata, M. (2016). Role of biofertilizers in conservation agriculture. In Bisht, J., Meena, V., Mishra, P., Pattanayak, A. (Eds.) Conservation Agriculture, 1st ed. Singapore: Springer, pp. 113 − 134. DOI:10.1007/978-981-10-2558-7_4.
- Terefe, T. and Eyob, M. (2015). Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. Journal of Environmental and Earth Science, 5(11), 41 − 46.
- Toop, T., Ward, S., Oldfield, T., Hull, M., Kirby, M., and Theodorou, M. (2020). AgroCycle – developing a circular economy in agriculture. Energy Procedia, 123, 76 – 80. DOI:10.1016/j.egypro.2017.07.269.
- Xu, L. and Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Frontiers in Plant Science, 9, 1567. DOI:10.3389/fpls.2018.01567.