Have a personal or library account? Click to login
Ligno-Cellulose Quality and Calorific Value of Elymus elongatus L. and the Novel Secale cereanum Tested Under Central European Conditions Cover

Ligno-Cellulose Quality and Calorific Value of Elymus elongatus L. and the Novel Secale cereanum Tested Under Central European Conditions

By: Štefan Tóth  
Open Access
|Jun 2023

References

  1. Barro, R., Cortés, R., Pérez, J., Ciria, P., Ciria, Carlos, S., Fernández, M., and Ciria, P. (2022). Nitrogen fertilisation and harvest time on biomass production and composition of tall wheatgrass in Mediterranean marginal conditions. Biomass and Bioenergy, 158(3), 106382. DOI:10.1016/j.biombioe.2022.106382.
  2. Borand, M. N. and Karaosmanoǧlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), article number 033104. DOI:10.1063/1.5025876.
  3. Briggs, J., Salon, P., Leif, J., Durling, R., St. John, L., Tilley, D., Young – Matthews, A., Smith, C., Plumb, H., Williams, J., Ugiansky, R., Dial, H., Rosales, M., Hybner, R., and Stan-nard, M. (2020). Evaluation of tall wheatgrass cultivars as a biofuel feedstock in cool season grass regions of the USA. Final study report. USDA, 7p. Available at: https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/capmcsr13653.pdf.
  4. Boros-Lajszner, E., Wyszkowska, J., Borowik, A., and Kucharsk, J. (2021). Energetic value of Elymus elongatus L. and Zea mays L. grown on soil polluted with Ni2+, Co2+, Cd2+, and sensitivity of rhizospheric bacteria to heavy metals. Energies, 14(16), 4903. DOI:10.3390/en14164903.
  5. Ciria, C. S., Barro, R., Sanz, M., and Ciria, P. (2020a). Long-term yield and quality performance of perennial energy grasses (Agropyron spp.) on marginal land. Agronomy, 10, 1051. DOI:10.3390/agronomy10071051.
  6. Ciria, C. S., Sastre, C. M., Carrasco, J., and Ciria, P. (2020b). Tall wheatgrass (Thinopyrum ponticum (Podp.)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands. Industrial Crops and Products, 146(8), 112 ‒ 184. DOI:10.1016/j.indcrop.2020.112184.
  7. Csete, S., Stranczinger, Sz., Szalontai, B., Farkas, A., Pál, R. W., Salamon-Albert, E., Kocsis, M., Tóvári, P., Vojtela, T., Dezső, J., Walcz, I., Janowszky, Zs., Janowszky, J., and Borhidi, A. (2011). Tall wheatgrass cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a potential energy crop for semi-arid lands of Eastern Europe. In Nayeripour, M. (Ed.) Sustainable growth and applications in renewable energy sources. pp. 269 ‒ 294. DOI: 10.5772/26790.
  8. Dickeduisberg, M., Laser, H., Tonn, B., and Isselstein, J. (2017). Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for bio-mass and methane yield than grass provenance. Industrial Crops and Products, 97, 653 – 663. DOI:10.1016/j.ind-crop.2016.12.055.
  9. EN ISO 13906 (2008). Animal feeding stuffs – Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents. 17 p.
  10. FAOSTAT (2020). Food and Agriculture Data. available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 April 2022).
  11. Giertl, T., Pauková, Ž., Hauptvogl, M., Prčík, M. and Gaduš, J. (2022). Evaluation of the biomass of Arundo donax L. in the context of regional bioenergetics. Polish Journal of Environmental Studies, 31(4), 1 ‒ 7. DOI:10.15244/pjoes/145413.
  12. Halász, E. and Sipos, T. (2007). Experiments with perennial rye Secale cereanum in Hungary, at University of Debrecen. Join International Conference on Long-term Experiment. Agricultural Research and Natural Resources. Debrecen, p. 127 ‒ 131. ISBN 978-963-473-054-5.
  13. Jablonowski, N. D., Pauly, M. and Dama, M. (2022). Microwave assisted pretreatment of Szarvasi (Agropyron elongatum) biomass to enhance enzymatic saccharification and direct glucose production. Frontiers in Plant Science Open Access, 124(1), article number 767254. DOI:10.3389/fpls.2021.767254.
  14. Jafari, A. A., Elmi, A. and Bakhtiari, M. (2014). Evaluation of yield and quality traits in 17 populations of tall wheat-grass (Agropyron elongatum) grown in rain fed area of Iran, under two cutting management. Romanian Agricultural Research, 31, 49 ‒ 58.
  15. Jensen, K. B., Robins, J. G., Rigby, C., and Waldron, B. L. (2016). Comparative trends in forage nutritional quality across the growing season in 13 grasses. Canadian Journal of Plant Science, 97(1), 72 – 82. DOI:10.1139/cjps-2015-0328.
  16. Kikas, T., Tutt, M., Raud, M., Alaru, M., Lauk, R., and Olt, J. (2016). Basis of energy crop selection for biofuel production: Cellulose vs. Lignin. International Journal of Green Energy, 13(1), 49 ‒ 54. DOI:10.1080/15435075.2014.909359.
  17. Kintl, A., Huňady I., Holátko J., Vítěz T., Hammerschmiedt T., Brtnický M., et al. (2022). Using the mixed culture of fodder mallow (Malva verticillata L.) and white sweet clover (Melilotus albus Medik.) for methane production. Fermentation, 94(8). DOI:10.3390/fermentation8030094.
  18. Kopecký, M., Mráz, P., Kolář, L., Váchalová, R., Bernas, J., Konvalina, P., Perná, K., Murindangabo, Y., and Menšík, L. (2021). Effect of fertilization on the energy profit of tall wheatgrass and reed canary grass. Agronomy, 11(3), article number 445. DOI:10.3390/agronomy11030445.
  19. Kron, I., Porvaz, P., Kráľová-Hricindová, A., Tóth, Š., Sarvaš, J., and Polák, M. (2017). Green harvests of three perennial energy crops and their chemical composition. International Journal of Agriculture and Environmental Research, 3(2), 2870 – 2883.
  20. Li, H. W., Zheng, Q., Li, B., Zhao, M.-L., and Li, Z. S. (2022). Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass. Acta Prataculturae Sinica, 31(5), 190 – 199. DOI:10.11686/cyxb2021384.
  21. Martyniak, D., Żurek, G. and Prokopiuk K. (2017). Biomass yield and quality of wild populations of tall wheatgrass Elymus elongatus (Host.) Runemark. Biomass and Bioenergy, 101, 21 – 29. DOI:10.1016/j.biombioe.2017.03.025.
  22. Miccoli, F. E., Arelovich, H. M., Martínez, M. F., Bravo, R. D., and Menghini, M. (2018). The impact of hydrolyzing and oxidizing agents on chemical composition and digestibility of various high-fibre forages. Grass and Forage Science, 73(3), 705 – 716. DOI:10.1111/gfs.12369.
  23. Moncada, B. J., Aristizábal, M. V. and Cardona, A. C. A. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116(12), 122 ‒ 134. DOI:10.1016/j.bej.2016.06.009.
  24. Monono, E. M., Nyren, R. E., Berti, M. T., and Pryor, S. W. (2013). Variability in biomass yield, chemical composition, and ethanol potential of individual and mixed herbaceous biomass species grown in North Dakota. Industrial Crops and Products, 41, 331 – 339. DOI:10.1016/j.ind-crop.2012.04.051.
  25. Nalepa, R. A. and Bauer, D. M. (2012). Marginal lands: The role of remotesensing in constructing landscapes for agrofuel. The Journal of Peasant Studies, 39(2), 403 – 422. DOI: 10.1080/03066150.2012.665890.
  26. Ortiz-Sanchez, M. and Cardona A. C. A. (2022). Analysis of the routes for biomass processing towards sustainable development in the conceptual design step: Strategy based on the compendium of bioprocesses portfolio. Bioresource Technology, 350, article number 126852. DOI:10.1016/j.biortech.2022.126852.
  27. Peterson, G. M. and Galbraith, J. K. (1932). The concept of marginal land. American Journal of Agricultural Economics, 14, 295 – 310.
  28. Porvaz, P., Tóth Š. and Marcin, A. (2012). Cultivation of Chinese silvergrass (Miscanthus sinensis Anderss.) on the East Slovak Lowland as a potential source of raw material for energy purposes. Agriculture (Polnohospodárstvo), 58(4), 146 – 153. DOI:10.2478/v10207-012-0016-5.
  29. Schneider, A., Rakszegi, M., Molnár-Láng, M., and Szakács É. (2016). Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theoretical and Applied Genetics, 129(5), 1045 – 1059. DOI:10.1007/s00122-016-2682-6.
  30. Scordia, D., Papazoglou, E. G., Kotoula, D., Sanz, M., Ciria, C. S., Pérez, J., Maliarenko, O., Prysiazhniuk, O., von Cossel, M., Greiner, B. E., Lazdina, D., and Makovskis, K. (2022). Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB-Bioenergy, 14, 710 ‒ 734. DOI:10.1111/gcbb.12935.
  31. Sipos, T. and Halasz, E. (2007). The role of perennial rye Secale cereale × S. montanum in sustainable agriculture. Cereal Research Communications, 35, 1073 – 1075. DOI:10.1556/CRC.35.2007.2.227.
  32. Szőke-Pázsi, K., Türkösi, E. and Szakács, E. (2021). Chromosome morphology and cytomolecular characteristics of the perennial rye cultivar ‘Kriszta’. Cereal Research Communications, 50, 789 ‒ 796. DOI:10.1007/s42976-021-00233-2.
  33. Szakács, É., Szőke-Pázsi, K., Kalapos, B., Schneider, A., Ivanizs, L., Rakszegi, M., Vida, G., Molnár, I., and Molnár-Láng, M. (2020). 1RS arm of Secale cereanum ‘Kriszta’ confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Scientific Reports, 10(11), article number 1792. DOI:10.1038/s41598-020-58419-3.
  34. Symanowicz, B., Becher, M., Kalembasa, S., and Ježowski, S. (2019). Possibilities of using fodder galega in the energy sector and agriculture. Applied Ecology and Environmental Research, 17(2), 2677 ‒ 2687. DOI:10.15666/aeer/1702_26772687.
  35. Tóth, Š. (2023). Yield of Elymus elongatus and Secale cereanum on marginal soils in Central Europe. Acta Fytotechnica et Zootechnica, 26(2), (In press).
  36. Tóth, Š. (2008). Weed occurrence under the field conditions of Slovakia. Acta fytotechnica et zootechnica, 11(4), 89 ‒ 95.
  37. Tyler, G. and Olsson T. (2001). Concentrations of 60 elements in the soil solution as related to the soil acidity. European Journal of Soil Science, 52(1), 151 – 165. DOI:10.1046/j.1365-2389.2001.t01-1-00360.x.
  38. Von Cossel, M., Lewandowski, I., Elbersen, B., Staritsky, I., Van Eupen, M., Iqbal, Y., Mantel, S., Scordia, D., Testa, G., Cosentino, S. L., Maliarenko, O., and Eleftheriadis, I. (2019). Marginal agricultural land low-input systems for biomass production. Energies, 12(16), 3123. DOI:10.3390/en12163123.
  39. Yu, C., Thy, P., Wang, L., Anderson, S. N., Vandergheynst, J. S., Upadhyaya, S. K., and Jenkins, B. M. (2014). Influence of leaching pretreatment on fuel properties of biomass. Fuel Processing Technology, 128, 43 – 53. DOI:10.1016/j.fuproc.2014.06.030.
DOI: https://doi.org/10.2478/agri-2022-0014 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 155 - 175
Submitted on: Mar 3, 2023
Accepted on: May 16, 2023
Published on: Jun 30, 2023
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Štefan Tóth, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.