References
- Alelign, S. (2021). Evaluation of the efficacy of Trichoderma and Pseudomonas species against bacterial wilt Ralstonia isolates of tomato (Lycopersicum species). African Journal of Microbiology Research, 15(5), 262 ‒ 271. DOI:10.5897/AJMR2021.9523.
- AL-surhanee, A.A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933 ‒ 2941. DOI:10.1016/j.sjbs.2022.01.020.907305535531256
- Badawy, M.E.I. and Rabea, E.I. (2011). Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011(29), 1 ‒ 29. DOI:10.1155/2011/460381.
- Berkow, E.L., Lockhart, S.R., and Ostrosky-Zeichner, L. (2020). Antifungal susceptibility testing: current approaches. Clinical Microbiology Reviews, 33(3), 1 ‒ 30. DOI:10.1128/Cmr.00069-19.
- Bochicchio, R., Labella, R., Vitti, A., Nuzzaci, M., Logozzo, G., and Amato, M. (2022). Root morphology, allometric relations and rhizosheath of ancient and modern tetraploid wheats (Triticum durum Desf.) in response to inoculation with Trichoderma harzianum T-22. Plants, 11(2), 1 ‒ 14. DOI:10.3390/plants11020159.877991935050047
- Brizuela, A.M., De la Lastra, E., Marín-Guirao, J.I., Gálvez, L., De Cara-García, M., Capote, N., and Palmero, D. (2020). Fusarium consortium populations associated with asparagus crop in Spain and their role on field decline syndrome. Journal of Fungi, 6(4), 1 ‒ 23. DOI:10.3390/jof6040336.776179233291584
- Carlucci, A., Raimondo, M.L., Colucci, D., and Lops, F. (2022). Streptomyces albidoflavus strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants. Plants, 11(11), 1 ‒ 12. DOI:10.3390/plants11111420.918260235684193
- Chang, X., Yan, L., Naeem, M., Khaskheli, M.I., Zhang, H., Gong, G., Zhang, M., Song, C., Yang, W., Liu, T., and Chen, W. (2020). Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens, 9(3), 1 ‒ 16. DOI:10.3390/pathogens9030211.715770032183013
- Cohen, S.I. and Heald, F.D. (1941). Wilt and root rot of asparagus is caused by Fusarium oxysporum (Schlecht.). Plant Disease Reporter, 25(1), 503 ‒ 509.
- Corpas-Hervias, C., Melero-Vara, J.M., Molinero-Ruiz, M.L., Zurera-Muñoz, C., and Basallote-Ureba, M.J. (2006). Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Disease, 90(11), 1441 ‒ 1451. DOI:10.1094/Pd-90-1441.30780912
- De la Lastra, E., Marín-Guirao, J.I., López-Moreno, F.J., Soriano, T., de Cara-García, M., and Capote, N. (2021). Potential inoculum sources of Fusarium species involved in asparagus decline syndrome and evaluation of soil disinfestation methods by qPCR protocols. Pest Management Science, 77(10), 4749 ‒ 4757. DOI:10.1002/ps.6519.34145951
- Deshaies, M., Lamari, N., Ng, C.K.Y., Ward, P., and Doohan, F.M. (2022). The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium gram-inearum. BMC Plant Biology, 73(22), 1‒17. DOI:10.1186/s12870-022-03451-w.885783935183130
- Du, S., Trivedi, P., Wei, Z., Feng, J., Hu, H., Bi, L., Huang, Q., and Liu, Y. (2022). The proportion of soil-borne fungal pathogens increases with elevated organic carbon in agricultural soils. mSystems, 7(2), 1 ‒ 12. DOI:10.1128/msystems.01337-21.904086435311561
- Elmer, W.H. (2015). Management of Fusarium crown and root rot of asparagus. Crop Protection, 73(1), 2 ‒ 6. DOI:10.1016/j.cropro.2014.12.005.
- Farahani-Kofoet, R.D., Witzel, K., Graefe, J., Grosch, R., and Zrenner, R. (2020). Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens, 9(6), 1 ‒ 20. DOI:10.3390/pathogens9060509.735034432599821
- Filyushin, M.A., Shagdarova, B.T., Shchennikova, A.V., Il’ina, A.V., Kochieva, E.Z., and Varlamov, V.P. (2022). Pretreatment with chitosan prevents Fusarium infection and induces the expression of chitinases and β-1,3-glucanases in garlic (Allium sativum L.). Horticulturae, 8(5), 1 ‒ 18. DOI:10.3390/horticulturae8050383.
- Gao, Y., Zhang, Y., Cheng, X., Zheng, Z., Wu, X., Dong, X., Hu, Y., and Wang, X. (2022). Agricultural jiaosu: An eco-friendly and cost-effective control strategy for suppressing Fusarium Root rot disease in Astragalus membranaceus. Frontiers in Microbiology, 13(1), 1‒ 15. DOI:10.3389/fmicb.2022.823704.900836035432283
- Haque, S.I. and Matsubara, Y. (2018). Arbuscular-mycorrhiza-induced salt tolerance and resistance to Fusarium root rot in asparagus plants. Acta Horticulturae, 1227(1), 365 ‒ 372. DOI:10.17660/ActaHortic.2018.1227.45.
- Harman, G., Khadka, R., Doni, F., and Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science, 11(1), 1‒21. DOI:10.3389/fpls.2020.610065.807247433912198
- Hassan, E.O., Shoala, T., Attia, A.M.F., Badr, O.A.M., Mahmoud, S.Y.M., Farrag, E.S.H., and EL-Fiki, I.A.I. (2022). Chitosan and nano-chitosan for management of Harpophora maydis: Approaches for investigating antifungal activity, pathogenicity, maize-resistant lines, and molecular diagnosis of plant infection. Journal of Fungi, 8(5), 1 ‒ 16. DOI:10.3390/jof8050509.914470935628764
- Hassan, O. and Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology, 11(2), 53 ‒ 70. DOI:10.3923/ajppaj.2017.53.70.
- Hermosa, R., Viterbo, A., Chet, I., and Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17 – 25. DOI:10.1099/mic.0.052274-0.21998166
- Hewedy, O.A., Abdel-Lateif, K.S., and Bakar, R.A. (2019). Genetic diversity and biocontrol efficacy of indigenous Trichoderma isolates against Fusarium wilt of pepper. Journal of Basic Microbiology, 60(2), 126 ‒ 135. DOI:10.1002/jobm.201900493.31840846
- Kappel, L., Kosa, N., and Gruber, s. (2022). The multilateral efficacy of chitosan and Trichoderma on Sugar Beet. Journal of Fungi, 8(2), 1 ‒ 23. DOI:10.3390/jof8020137.887945835205892
- Ke, Y., Ding, B., Zhang, M., Dong, T., Fu, Y., Lv, Q., Ding, W., and Wang, X. (2022). Study on inhibitory activity and mechanism of chitosan oligosaccharides on Aspergillus flavus and Aspergillus fumigatus. Carbohydrate Polymers, 275(1), 118673. DOI:10.1016/j.carbpol.2021.118673.34742409
- Kumar, R., Duhan, J.S., Manuja, A., Kaur, P., Kumar, B., and Sadh, P.K. (2022). Toxicity assessment and control of early blight and stem rot of Solanum tuberosum L. by mancozeb-loaded chitosan-gum acacia nanocomposites. Journal of Xenobiotics, 12(2), 74 ‒ 90. DOI:10.3390/jox12020008.903620835466214
- Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., and Barka, E.A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 1‒33. DOI:10.3390/microorganisms10030596.895128035336171
- Lee, J.W., Lee, J.H., Yu, I.H., Gorinstein, S., Bae, J.H., and Ku, Y.G. (2014). Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods for Human Nutrition, 69(2), 175 ‒ 181. DOI:10.1007/s11130-014-0418-9.24793354
- Leslie, J.F. and Summerell, A.B. (2006). The Fusarium Laboratory Manual. UK: BlackWell Publishing Oxford, 388.10.1002/9780470278376
- Li, Y., Sun, X., Bi, Y., Ge, Y., and Wang, Y. (2009). Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agricultural Sciences in China, 8(5), 597 ‒ 604. DOI:10.1016/s1671-2927(08)60251-5.
- Mishra, P.K., Fox, R.T.V., and Culham, A. (2003). Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters, 218(2), 329 ‒ 332. DOI:10.1111/j.1574-6968.2003.tb11537.x.12586412
- Mondani, L., Chiusa, G., and Battilani, P. (2021). Fungi associated with garlic during the cropping season, with focus on Fusarium proliferatum and F. oxysporum. Plant Health Progress, 22(1), 37 ‒ 46. DOI:10.1094/PhP-06-20-0054-rs.
- Mukherjee, P.K., Mendoza-Mendoza, A., Zeilinger, S., and Horwitz, B.A. (2022). Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 39(1), 15 ‒ 33. DOI:10.1016/j.fbr.2021.11.004.
- Onaran, A., Bayar, Y., Karakurt, T., Tokatli, K., Bayram, M., and Yanar, Y. (2021). Antifungal activity of chitosan against soil-borne plant pathogens in cucumber and a molecular docking study. Journal of Taibah University for Science, 15(1), 852 ‒ 860. DOI:10.1080/16583655.2021.2006434.
- Orzali, L., Corsi, B., Forni, C., and Riccioni, L. (2017). Chitosan in agriculture: A new challenge for managing plant disease. in Shalaby, E.A. (ed.). Biological activities and application of marine polysaccharides. 1st ed., Croatia: InTech, Rijeka, 328p.
- Pedrero-Méndez, A., Insuasti, H.C., Neagu, T., Illescas, M., Rubio, M.B., Monte, E., and Hermosa, R. (2021). Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. Journal of Fungi, 7(12), 1 ‒ 21. DOI:10.3390/jof7121087.870489034947069
- Qing, W., Jin-Hua, Z., Qian, W., Yang, N., and Li-Pu, G. (2015). Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. Journal of Integrative Agriculture, 14(4), 691 ‒ 697. DOI:10.1016/S2095-3119(14)60800-5.
- Reid, T.C., Hausbeck, M.K., and Kizilkaya, K. (2002). Use of fungicides and biological controls in the suppression of Fusarium crown and root rot of asparagus under greenhouse and growth chamber conditions. Plant Disease, 86(5), 493 ‒ 498. DOI:10.1094/Pdis.2002.86.5.493.
- Ruangsanka, S. (2014). Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Science Asia, 40(1), 1 ‒ 16. DOI:10.2306/scienceasia1513-1874.2014.40.016.
- Shih, P., Liao, Y., Tseng, Y., Deng, F., and Lin, C. (2019). A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Frontiers in Microbiology, 10(1), 1 ‒ 14. DOI:10.3389/fmicb.2019.00602.644370930972050
- Singha, I.M., Kakoty, Y., Unni, B.G., Das, J., and Kalita, M.C. (2016). Identification and characterization of Fusarium sp. using ITS and RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering and Biotechnology, 14(1), 99 ‒ 105. DOI:10.1016/j.jgeb.2016.07.001.629988730647603
- Stamford, T.C.M., Alcântara, S.R.C., Berger, L.R.R., Stamford, N.P., Silva, M.C.F., Borges, T.K.S., Laranjeiras, D., and Campos-Takaki, G.M. (2010). Antimicrobial activity of chitosan against Fusarium oxysporum f. sp. tracheiphilum. The 3t international conference on microorganisms in industry and environment, Lisbon: Scientific and industrial research to consumer product, pp. 12 ‒ 15.
- Stasinska-Jakubas, M. and Hawrylak-Nowak, B. (2022). Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules, 27(9), 1 ‒ 17. DOI:10.3390/molecules27092801.910199835566152
- Subramaniam, S., Zainudin, N.A.I.M., Aris, A., and Hasan, Z.A.E. (2022). Role of Trichoderma in plant growth promotion. In Gupta, V.K. and Tuohy, M.G. (Eds.). Fungal biology. 1st ed. USA: Springer, pp. 257 ‒ 280.10.1007/978-3-030-91650-3_9
- Surono, and Narisawa, K. (2018). The inhibitory role of dark septate endophytic fungus Phialocephala fortinii against Fusarium disease on the Asparagus officinalis growth in organic source conditions. Biological Control, 121(1), 159 ‒ 167. DOI:10.1016/j.biocontrol.2018.02.017.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725 ‒ 2729. DOI:10.1093/molbev/mst197.384031224132122
- Tyskiewicz, R., Nowak, A., Ozimek, E., and Jaroszuk-Sciseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 1 ‒ 28. DOI:10.3390/ijms23042329.887598135216444
- Viejobueno, J., Albornoz, P.L., Camacho, M., de los Santos, B., Martínez-Zamora, M.G., and Salazar, S.M. (2021). Protection of strawberry plants against charcoal rot disease (Macrophomina phaseolina) induced by Azospirillum brasilense. Agronomy, 11(2), 1‒12. DOI:10.3390/agronomy11020195.
- Vitti, A., Bevilacqua, V., Logozzo, G., Bochicchio, R., Amato, M., and Nuzzaci, M. (2022). Seed coating with Trichoderma harzianum T-22 of Italian durum wheat increases protection against Fusarium culmorum-induced crown rot. Agriculture, 12(5), 1 ‒ 12. DOI:10.3390/agriculture12050714.
- Wang, Q., Li, H., Lei, Y., Su, Y., and Long, Y. (2022). Chitosan as an adjuvant to improve isopyrazam azoxystrobin against leaf spot disease of kiwifruit and enhance its photosynthesis, quality, and amino acids. Agriculture, 12(3), 1 ‒ 13. DOI:10.3390/agriculture12030373.
- Xu, H., Yan, L., Zhang, M., Chang, X., Zhu, D., Wei, D., Naeem, M., Song, C., Wu, X., Liu, T., Chen, W., and Yang, W. (2022). Changes in the density and composition of rhizosphere pathogenic Fusarium and beneficial Trichoderma contributing to reduced root rot of intercropped soybean. Pathogens, 11(4), 1 ‒ 16. DOI:10.3390/pathogens11040478.903121335456153
- Zhong, S. and Steffenson, B.J. (2001). Virulence and molecular diversity in Cochliobolus sativus. Phytopathology, 91(5), 469 ‒ 476. DOI:10.1094/PhYto.2001.91.5.469.
- Zohara, F., Surovy, M.Z., Khatun, A., Prince, M.F.R.K., Akanda, A.M., Rahman, M., and Islam, T. (2019). Chitosan bio-stimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1), 1‒8. DOI:10.5586/aa.1763.