References
- Ahn, D-H., Higashide, T., Iwasaki, Y., Kawasaki, Y., and Nakano, A. (2015). Estimation of leaf area index of cucumbers (Cucumis sativus L.) trained on a high-wire. Bulletin of the National Institute of Vegetable and Tea Science, 14, 23 – 29.
- Al-Halimi, R. and Moussa, M.A. (2015). Long-term yield prediction of greenhouse sweet pepper crops. GSTF Journal on Agricultural Engineering (JAE), 2(1), 7 – 12. doi:10.5176/2345-7848_2.1.11.
- Aloni, B., Karni, L., Zaidman, Z., and Schaffer, A.A. (1996). Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Annals of Botany, 78(2), 163 – 168. doi:10.1006/anbo.1996.0109.
- Charlo, H.C.O., Oliveira S.F., Castoldi, R., Vargas, P.F., Braz, L.T., and Barbosa, J.C. (2011). Growth analysis of sweet pepper cultivated in coconut fiber in a greenhouse. Horticultura Brasileira, 29(3), 316 – 323. doi:10.1590/S0102-05362011000300010.
- Cho, Y.Y., Oh, S., Oh, M.M. and Son, J.E. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae, 111(4), 330 – 334. doi:10.1016/j.scienta.2006.12.028.
- Cruz-Huerta, N., Williamson, J.G., and Darnell, R.L. (2011). Low night temperature increases ovary size in sweet pepper cultivars. HortScience, 46(3), 396 – 401. doi:10.21273/HORTSCI.46.3.396.
- Fan, X-X., Xu, Z-G., Liu, X-Y., Tang, C-M., Wang, L-W., and Han, X-L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scienta Horticulturae, 153(4), 50 – 55. doi:10.1016/j.scienta.2013.01.017.
- Heuvelink, E. (1999). Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of Botany, 83(4), 413 – 422. doi:10.1006/ANBO.1998.0832.
- Heuvelink, E. and Kierkels, T. (2015). Energy saving: plant offers many possibilities. In Heuvelink, E. and Kierkels, T. (Eds.). Plant physiology in greenhouse. Woerden: Horti- Text BV, pp. 82 – 83.
- Heuvelink, E. and Körner, O. (2001). Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Annals of Botany, 88(1), 69 – 74. doi: 10.1006/anbo.2001.1427.
- Higashide, T. (2015). Factors pertaining to dry matter production in tomato plants. In Higashide, T. (Ed.). Solanum lycopersicum: production, biochemistry and health benefits. New York: Nova Science Publishers, pp. 1 – 23.
- Higashide, T. and Heuvelink, E. (2009). Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society Horticultural Science, 134(4), 460 – 465. doi:10.21273/JASHS.134.4.460.
- Higashide, T., Yasuba, K., Suzuki, K., Nakano, A., and Ohmori, H. (2012). Yield of Japanese tomato cultivars has been hampered by a breeding focus on flavor. HortScience, 47(10), 1408 – 1411. doi:10.21273/HORTSCI.47.10.1408.
- Hurewitz, J. and Janes, H.W. (1983). Effect of altering the root-zone temperature on growth, translocation, carbon exchange rate, and leaf starch accumulation in the tomato. Plant Physiology, 73(1), 46 – 50. doi:10.1104/pp.73.1.46.106640416663183
- Jones, J.W., Dayan, E., Allen, L.H., van Keulen, H., and Challa, H. (1991). A dynamic tomato growth and yield model (TOMGRO). Transaction of the ASAE, 34(2), 663 – 672. doi:10.13031/2013.31715.
- Kafkafi, U. (2006). Functions of the root system. In Raviv, M. and Lieth, J.H. (Eds.). Soilless culture: theory and practice. Amsterdam: Elsevier B.V., pp. 13 – 40.
- Kaiser, E., Matsubara, S., Harbinson, J., Heuvelink, E., and Marcelis, L.F. M. (2017). Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia Plantarum, 162(4), 506 – 517. doi:10.1111/PPL.12668.
- Kleinendorst, A. and Veen, B. (1983). Responses of young cucumber plants to root and shoot temperatures. Netherlands Journal of Agricultural Sciences, 31(1), 47 – 61. doi: 10.18174/njas.v31i1.16961.
- Lee, J., Moon, T., Nam, D.S., Park, K.S., and Son, J.E. (2018). Estimation of leaf area in paprika based on leaf length, leaf width, and node number using regression models and an artificial neural network. Horticultural Science and Technology, 36(2), 183 – 192. doi:10.12972/KJHST.20180019.
- Lin, W-C., Frey, D., Nigh, G.D., and Ying, C.C. (2009). Combined analysis to characterize yield pattern of greenhouse- grown red sweet peppers. HortScience, 44(2), 362 – 365. doi:10.21273/HORTSCI.44.2.362.
- Lin, W-C. and Hill, B.D. (2008). Neural network modelling to predict weekly yields of sweet peppers in a commercial greenhouse. Canadian Journal of Plant Science, 88(3), 531 – 536. doi:10.4141/cjps07165.
- Marcelis, L.F.M. and Baan Hofman-Eijer, L.R. (1997). Effects of seed number on competition and dominance among fruits in Capsicum annuum L. Annals of Botany, 79(6), 687 – 693. doi:10.1006/anbo.1997.0398.
- Monsi, M. and Saeki, T. (2005). On the factor light in plant communities and its importance for matter production. Annals of Botany, 95(3), 549 – 567. doi:10.1093/aob/mci052. (Originally published as: Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduction. Japanese Journal of Botany, 14, 22 – 52).424679915661751
- Ohtani, Y. (1997). Effective radiation, micrometeorological phenomena. In Maki, T., Iwata, S., Uchijima, Z., Oikawa, T., Omasa, K., Kurata, K., Kozai, T., Goto, E., Kon, E. H., Nouchi, I., Harazono, Y., Hoshi, T., Honjo, H. and Yamakawa, S. (Eds.). Agricultural meteorology glossary (In Japanese). Tokyo: Society for Agricultural Meteorology of Japan, pp. 106 – 107.
- Padrón, R.A.R., Lopes, S.J., Swarowsky, A., Cerquera, R. R., Nogueira, C.U., and Maffei, M. (2016). Non-destructive models to estimate leaf area on bell pepper crop. Ciência Rural, 46(11), 1938 – 1944. doi:10.1590/0103-8478cr20151324.
- Saito, T., Kawasaki, Y., Ahn, D-H., Ohyama, A., and Higashide, T. (2020a). Prediction and improvement of yield and dry matter production based on modeling and non-destructive measurement in year-round greenhouse tomatoes. The Horticulture Journal, 89(4), 425 – 431. doi:10.2503/hortj.UTD-170.
- Saito, T., Mochizuki, Y., Kawasaki, Y., Ohyama, A., and Higashide, T. (2020b). Estimation of leaf area and light-use efficiency by non-destructive measurements for growth modeling and recommended leaf area index in greenhouse tomatoes. The Horticulture Journal, 89(4), 445 – 453. doi: 10.2503/hortj.UTD-171.
- Vanthoor, B.H.E., de Visser, P.H.B., Stanghellini, C., and van Henten, E.J. (2011). A methodology for model-based greenhouse design: part 2, description and validation of a tomato yield model. Biosystems Engineering, 110(4), 378 – 395. doi:10.1016/j.biosystemseng.2011.08.005.
- Watabe, T., Homma, M., Ahn, D-H., and Higashide, T. (2021). Examination of yield components and the relationship be tween dry matter production and fruit yield in greenhouse sweet pepper (Capsicum annuum). The Horticulture Journal, 90(3), 247 – 254. doi:10.2503/hortj.UTD-263.
- Winsor, C.P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18(1), 1 – 8. doi:10.1073/pnas.18.1.1.107615316577417
- Wubs, M.A., Ma, Y., Heuvelink, E., and Marcelis, L.F.M. (2009). Genetic differences in fruit-set patterns are determined by differences in fruit sink strength and a source: sink threshold for fruit set. Annals of Botany, 104(5), 957 – 964. doi: 10.1093/aob/mcp181.274952719643909
- Yasuba, K., Hoshi, T., Kaneko, S., Higashide, T., Omori, H., and Nakano, A. (2013). Establishment of an environmental measurement node using open source hardware. Agricultural Information Research (Japan), 22(4), 247 – 255 (In Japanese with English abstract). doi:10.3173/air.22.247.