References
- Bouattour, M., Casals, R., Albanell, E., Such, X., & Caja, G. (2008). Feeding soybean oil to dairy goats increases conjugated linoleic acid in milk. Journal of Dairy Science, 91(6), 2399–2407. https://doi.org/10.3168/jds.2007-0753
- Zhu, H., Ma, J., Du, R., Zheng, L., Wu, J., Song, W., … & Hua, J. (2014). Characterization of immortalized dairy goat male germline stem cells (mgscs). Journal of Cellular Biochemistry, 115(9), 1549–1560. https://doi.org/10.1002/jcb.24812
- Lu, C. and Miller, B. (2019). Current status, challenges and prospects for dairy goat production in the americas. Asian-Australasian Journal of Animal Sciences, 32(8), 1244–1255. https://doi.org/10.5713/ajas.19.0256
- Bett, R., Kosgey, I., Kahi, A., & Peters, K. (2008). Analysis of production objectives and breeding practices of dairy goats in kenya. Tropical Animal Health and Production, 41(3), 307–320. https://doi.org/10.1007/s11250-008-9191-9
- Romero-Huelva, M., Ramírez-Fenosa, M., Planelles-González, R., García-Casado, P., & Molina-Alcaide, E. (2017). Can by-products replace conventional ingredients in concentrate of dairy goat diet?. Journal of Dairy Science, 100(6), 4500–4512. https://doi.org/10.3168/jds.2016-11766
- Tsiplakou, E., Kotrotsios, V., Hadjigeorgiou, I., & Zervas, G. (2010). Differences in sheep and goats milk fatty acid profile between conventional and organic farming systems. Journal of Dairy Research, 77(3), 343–349. https://doi.org/10.1017/s0022029910000270
- Bampidis, V., Azimonti, G., Bastos, M., Dusemund, B., Durjava, M., Kouba, M., … & Revez, J. (2022). Assessment of the efficacy of the feed additive consisting of saccharomyces cerevisae cncm i‐1077 (levucell® sc) for dairy cows, cattle for fattening, minor ruminant species and camelids (lallemand sas). Efsa Journal, 20(7). https://doi.org/10.2903/j.efsa.2022.7431
- Leiber, F., Arnold, N., Heckendorn, F., & Werne, S. (2020). Assessing effects of tannin-rich sainfoin supplements for grazing dairy goats on feed protein efficiency. Journal of Dairy Research, 87(4), 397–399. https://doi.org/10.1017/s0022029920000965
- Contreras-Jodar, A., Salama, A., Hamzaoui, S., Vailati-Riboni, M., Caja, G., & Loor, J. (2018). Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. Journal of Dairy Research, 85(4), 423–430. https://doi.org/10.1017/s0022029918000705
- Mosolov, A., Gorlov, I., Nikolaev, D., Slozhenkina, M., Kudryashova, O., & Vasilyeva, M. (2022). Ensuring environmental safety of goat milk production based on the integration of innovations in feeding. Iop Conference Series Earth and Environmental Science, 981(2), 022098. https://doi.org/10.1088/1755-1315/981/2/022098
- Contreras-Jodar, A., Nayan, N., Hamzaoui, S., Caja, G., & Salama, A. (2019). Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. Plos One, 14(2), e0202457. https://doi.org/10.1371/journal.pone.0202457
- Contreras-Jodar, A., Salama, A., Hamzaoui, S., Vailati-Riboni, M., Caja, G., & Loor, J. (2018). Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. Journal of Dairy Research, 85(4), 423–430. https://doi.org/10.1017/s0022029918000705
- Hamzaoui, S., Caja, G., Such, X., Albanell, E., & Salama, A. (2020). Milk production and energetic metabolism of heat-stressed dairy goats supplemented with propylene glycol. Animals, 10(12), 2449. https://doi.org/10.3390/ani10122449
- Evan, T., Carro, M., Yepes, J., Haro, A., Arbesú, L., Romero-Huelva, M., … & Molina-Alcaide, E. (2020). Effects of feeding multinutrient blocks including avocado pulp and peels to dairy goats on feed intake and milk yield and composition. Animals, 10(2), 194. https://doi.org/10.3390/ani10020194
- Salama, A., Caja, G., Albanell, E., Such, X., Casals, R., & Plaixats, J. (2003). Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Research, 70(1), 9–17. https://doi.org/10.1017/s0022029902005708
- Ghavipanje, N., Nasri, M., Farhangfar, S., Ghiasi, S., & Vargas-Bello-Pérez, E. (2021). Regulation of nutritional metabolism in transition dairy goats: energy balance, liver activity, and insulin resistance in response to berberine supplementation. Animals, 11(8), 2236. https://doi.org/10.3390/ani11082236
- Nguyen, T., Chaiyabutr, N., Chanpongsang, S., & Thammacharoen, S. (2017). Dietary cation and anion difference: effects on milk production and body fluid distribution in lactating dairy goats under tropical conditions. Animal Science Journal, 89(1), 105–113. https://doi.org/10.1111/asj.12897
- Pereira, G., Neto, J., Gracindo, Â., Silva, Y., Difante, G., Gurgel, A., … & Lima, G. (2021). Replacement of grain maize with spineless cactus in the diet of dairy goats. Journal of Dairy Research, 88(2), 134–138. https://doi.org/10.1017/s0022029921000352
- Bøe, K., Ehrlenbruch, R., & Andersen, I. (2011). The preference for water nipples vs. water bowls in dairy goats. Acta Veterinaria Scandinavica, 53(1). https://doi.org/10.1186/1751-0147-53-50
- Hamzaoui, S., Salama, A., Albanell, E., Such, X., & Caja, G. (2013). Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. Journal of Dairy Science, 96(10), 6355–6365. https://doi.org/10.3168/jds.2013-6665
- Scholtens, M., Lopez-Villalobos, N., Garrick, D., Blair, H., Lehnert, K., & Snell, R. (2019). Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in new zealand dairy goats. Animal Science Journal, 91(1). https://doi.org/10.1111/asj.13310
- Xiong, J., Bao, J., Hu, W., Shang, M., & Zhang, L. (2023). Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1044017
- Lashmar, S., Visser, C., & Marle-Köster, E. (2016). Snp-based genetic diversity of south african commercial dairy and fiber goat breeds. Small Ruminant Research, 136, 65–71. https://doi.org/10.1016/j.smallrumres.2016.01.006
- Anggraeni, A., Syifa, L., Sari, O., Ishak, A., & Sumantri, C. (2021). Polymorphism of csn1s1 (g.12164g>a) and csn2 (g.8913c>a) genes in pure and cross dairy goats. Bio Web of Conferences, 33, 02001. https://doi.org/10.1051/bioconf/20213302001
- Mastrangelo, S., Sardina, M., Tolone, M., & Portolano, B. (2013). Genetic polymorphism at the csn1s1 gene in girgentana dairy goat breed. Animal Production Science, 53(5), 403. https://doi.org/10.1071/an12242
- Wang, G., Pi, X., Ji, Z., Qin, Z., Hou, L., Chao, T., … & Wang, J. (2015). Investigation of the diversity and origins of chinese dairy goats via the mitochondrial dna d-loop. Journal of Animal Science, 93(3), 949. https://doi.org/10.2527/jas.2014-8420
- McLaren, A., Mucha, S., Mrode, R., Coffey, M., & Conington, J. (2016). Genetic parameters of linear conformation type traits and their relationship with milk yield throughout lactation in mixed-breed dairy goats. Journal of Dairy Science, 99(7), 5516–5525. https://doi.org/10.3168/jds.2015-10269
- Kahi, A. and Wasike, C. (2019). Dairy goat production in sub-saharan africa: current status, constraints and prospects for research and development. Asian-Australasian Journal of Animal Sciences, 32(8), 1266–1274. https://doi.org/10.5713/ajas.19.0377
- Romero-Huelva, M., Ramírez-Fenosa, M., Planelles-González, R., García-Casado, P., & Molina-Alcaide, E. (2017). Can by-products replace conventional ingredients in concentrate of dairy goat diet?. Journal of Dairy Science, 100(6), 4500–4512. https://doi.org/10.3168/jds.2016-11766
- Sejian, V., Silpa, M., Nair, M., Devaraj, C., Krishnan, G., Bagath, M., … & Bhatta, R. (2021). Heat stress and goat welfare: adaptation and production considerations. Animals, 11(4), 1021. https://doi.org/10.3390/ani11041021
- Paskaš, S., Miocinovic, J., Vejnović, B., & Becskei, Z. (2019). The nutritional quality of feedstuffs used in dairy goat nutrition in vojvodina. Biotechnology in Animal Husbandry, 35(2), 163–178. https://doi.org/10.2298/bah1902163p
- Chilliard, Y. and Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction Nutrition Development, 44(5), 467–492. https://doi.org/10.1051/rnd:2004052
- Min, B., Hart, S., Sahlu, T., & Satter, L. (2005). The effect of diets on milk production and composition, and on lactation curves in pastured dairy goats. Journal of Dairy Science, 88(7), 2604–2615. https://doi.org/10.3168/jds.s0022-0302(05)72937-4
- Bonanno, A., Grigoli, A., Montalbano, M., Bellina, V., Mazza, F., & Todaro, M. (2013). Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αs1-casein synthesis. European Food Research and Technology, 237(6), 951–963. https://doi.org/10.1007/s00217-013-2069-8
- Wu, Z., Yang, X., Zhang, J., Wang, W., Liu, D., Hou, B., … & Xia, Y. (2023). Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1147685
- Ghaffari, M., Tahmasbi, A., Khorvash, M., Naserian, A., & Vakili, A. (2013). Effects of pistachio by-products in replacement of alfalfa hay on ruminal fermentation, blood metabolites, and milk fatty acid composition in saanen dairy goats fed a diet containing fish oil. Journal of Applied Animal Research, 42(2), 186–193. https://doi.org/10.1080/09712119.2013.824889
- Muelas, R., Monllor, P., Romero, G., Sayas-Barberá, E., Navarro, C., Díaz, J., … & Sendra, E. (2017). Milk technological properties as affected by including artichoke by-products silages in the diet of dairy goats. Foods, 6(12), 112. https://doi.org/10.3390/foods6120112
- Chen, L., Bagnicka, E., Chen, H., & Shu, G. (2023). Health potential of fermented goat dairy products: composition comparison with fermented cow milk, probiotics selection, health benefits and mechanisms. Food & Function, 14(8), 3423–3436. https://doi.org/10.1039/d3fo00413a
- Levesque, J., Dion, S., Rico, D., Brassard, M., Gervais, R., & Chouinard, P. (2022). Milk yield and composition in dairy goats fed extruded flaxseed or a high-palmitic acid fat supplement. Journal of Dairy Research, 89(4), 355–366. https://doi.org/10.1017/s0022029922000784
- Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science, 86(5), 1751–1770. https://doi.org/10.3168/jds.s0022-0302(03)73761-8
- Gebereyowhans, S. (2023). Inclusion of microalgae in the caprine diet improves nutritional profile of milk and its camembert cheese. International Journal of Dairy Technology, 76(4), 801–812. https://doi.org/10.1111/1471-0307.12994
- Miroshina, T. and Chalova, N. (2023). Dairy goat breeding in russia and the world (review). E3s Web of Conferences, 380, 01004. https://doi.org/10.1051/e3sconf/202338001004
- Musco, N., Morittu, V., Mastellone, V., Spina, A., Vassalotti, G., D’Aniello, B., … & Lombardi, P. (2021). Effects of ecotrofin™ on milk yield, milk quality and serum biochemistry in lactating goats. Journal of Animal Physiology and Animal Nutrition, 105(S1), 26–33. https://doi.org/10.1111/jpn.13592
- Drackley, J. and Cardoso, F. (2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined tmr systems. Animal, 8, 5–14. https://doi.org/10.1017/s1751731114000731
- Broderick, G. (2018). Review: optimizing ruminant conversion of feed protein to human food protein. Animal, 12(8), 1722–1734. https://doi.org/10.1017/s1751731117002592
- Aguilera, J., Prieto, C., & Fonolla, J. (1990). Protein and energy metabolism of lactating granadina goats. British Journal of Nutrition, 63(2), 165–175. https://doi.org/10.1079/bjn19900104
- Ghavipanje, N., Nasri, M., Farhangfar, S., Ghiasi, S., & Vargas-Bello-Pérez, E. (2021). Regulation of nutritional metabolism in transition dairy goats: energy balance, liver activity, and insulin resistance in response to berberine supplementation. Animals, 11(8), 2236. https://doi.org/10.3390/ani11082236
- Berthel, R., Simmler, M., Dohme-Meier, F., & Keil, N. (2022). Dairy sheep and goats prefer the single components over the mixed ration. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1017669
- Binggeli, S., Lapierre, H., Charbonneau, E., Ouellet, D., & Pellerin, D. (2021). Economic and environmental effects of revised metabolizable protein and amino acid recommendations on canadian dairy farms. Journal of Dairy Science, 104(9), 9981–9998. https://doi.org/10.3168/jds.2020-19893
- Fadul-Pacheco, L., Pellerin, D., Chouinard, P., Wattiaux, M., Duplessis, M., & Charbonneau, E. (2017). Nitrogen efficiency of eastern canadian dairy herds: effect on production performance and farm profitability. Journal of Dairy Science, 100(8), 6592–6601. https://doi.org/10.3168/jds.2016-11788
- Hassan, F., Arshad, M., Li, M., Rehman, M., Loor, J., & Huang, J. (2020). Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects. Animals, 10(11), 2076. https://doi.org/10.3390/ani10112076
- Yang, W., Beauchemin, K., & Rode, L. (1999). Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science, 82(2), 391–403. https://doi.org/10.3168/jds.s0022-0302(99)75245-8
- Romero-Huelva, M., Ramos-Morales, E., & Molina-Alcaide, E. (2012). Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. Journal of Dairy Science, 95(10), 6015–6026. https://doi.org/10.3168/jds.2012-5573
- Molina-Alcaide, E., Morales-García, Y., Martín-García, A., Salem, H., Nefzaoui, A., & Sanz-Sampelayo, M. (2010). Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial n flow, and milk yield and composition in goats. Journal of Dairy Science, 93(5), 2076–2087. https://doi.org/10.3168/jds.2009-2628
- Zhu, W., Xu, W., Wei, C., Zhang, Z., Jiang, C., & Chen, X. (2020). Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (capra. hircus). Animals, 10(1), 151. https://doi.org/10.3390/ani10010151
- Patil, P., Gendley, M., Dubey, M., Dhok, A., Gade, N., & Khune, V. (2023). Effect of feeding gram straw-based complete feed pellets on the performance, nutrient utilization and rumen fermentation of goats. Asian Journal of Dairy and Food Research, (Of). https://doi.org/10.18805/ajdfr.dr-2031
- Chanjula, P., Pakdeechanuan, P., & Wattanasit, S. (2014). Effects of dietary crude glycerin supplementation on nutrient digestibility, ruminal fermentation, blood metabolites, and nitrogen balance of goats. Asian-Australasian Journal of Animal Sciences, 27(3), 365–374. https://doi.org/10.5713/ajas.2013.13494
- Hassanein, H., Maggiolino, A., El-Fadel, M., Palo, P., El-Sanafawy, H., Hussein, A., … & Salem, A. (2023). Inclusion of azolla pinnata as an unconventional feed of zaraibi dairy goats, and effects on milk production and offspring performance. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1101424
- El-Sanafawy, H., Maggiolino, A., El-Esawy, G., Riad, W., Zeineldin, M., Abdelmegeid, M., … & Salem, A. (2023). Effect of mango seeds as an untraditional source of energy on the productive performance of dairy damascus goats. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1058915
- Mekuriaw, S., Tsunekawa, A., Ichinohe, T., Tegegne, F., Haregeweyn, N., Kobayashi, N., … & Fievez, V. (2020). Effect of feeding improved grass hays and eragrostis tef straw silage on milk yield, nitrogen utilization, and methane emission of lactating fogera dairy cows in ethiopia. Animals, 10(6), 1021. https://doi.org/10.3390/ani10061021
- Moreno-Fernandez, J., López-Aliaga, I., García-Burgos, M., Alférez, M., & Díaz-Castro, J. (2019). Fermented goat milk consumption enhances brain molecular functions during iron deficiency anemia recovery. Nutrients, 11(10), 2394. https://doi.org/10.3390/nu11102394
- Nestares, T., Barrionuevo, M., Díaz-Castro, J., López-Aliaga, I., Alferez, M., & Campos, M. (2008). Calcium-enriched goats’ milk aids recovery of iron status better than calcium-enriched cows’ milk, in rats with nutritional ferropenic anaemia. Journal of Dairy Research, 75(2), 153–159. https://doi.org/10.1017/s0022029908003178
- Sánchez, J., Montes, P., Jiménez, A., & Andrés, S. (2007). Prevention of clinical mastitis with barium selenate in dairy goats from a selenium-deficient area. Journal of Dairy Science, 90(5), 2350–2354. https://doi.org/10.3168/jds.2006-616
- Almeida, V., Lima, T., Filho, G., Bom, H., Fonseca, S., Evêncio-Neto, J., … & Mendonça, F. (2022). Copper deficiency in dairy goats and kids. Pesquisa Veterinária Brasileira, 42. https://doi.org/10.1590/1678-5150-pvb-7162
- Medeiros, E., Queiroga, R., Oliveira, M., Medeiros, A., Sabedot, M., Bomfim, M., … & Madruga, M. (2014). Fatty acid profile of cheese from dairy goats fed a diet enriched with castor, sesame and faveleira vegetable oils. Molecules, 19(1), 992–1003. https://doi.org/10.3390/molecules19010992
- Yuniarti, E., Evvyernie, D., & Astuti, D. (2015). Production and energy partition of lactating dairy goats fed rations containing date fruit waste. Media Peternakan, 39(1), 27–33. https://doi.org/10.5398/medpet.2016.39.1.27
- Thoh, D., Pakdeechanuan, P., & Chanjula, P. (2017). Effect of supplementary glycerin on milk composition and heat stability in dairy goats. Asian-Australasian Journal of Animal Sciences, 30(12), 1711–1717. https://doi.org/10.5713/ajas.17.0066
- Noor, M., Rusli, N., Mat, K., Hasnita, C., & Mira, P. (2020). Milk composition and milk quality of saanen crossbreed goats supplemented by mineral blocks. Tropical Animal Science Journal, 43(2), 169–175. https://doi.org/10.5398/tasj.2020.43.2.169
- Foksowicz-Flaczyk, J., Wójtowski, J., Dankow, R., Mikołajczak, P., Pikul, J., Gryszczyńska, A., … & Stanisławski, D. (2022). The effect of herbal feed additives in the diet of dairy goats on intestinal lactic acid bacteria (lab) count. Animals, 12(3), 255. https://doi.org/10.3390/ani12030255
- Salama, A., Caja, G., Albanell, E., Such, X., Casals, R., & Plaixats, J. (2003). Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Research, 70(1), 9–17. https://doi.org/10.1017/s0022029902005708
- Chang, G., Yan, J., Ma, N., Liu, X., Dai, H., Bilal, M., … & Shen, X. (2018). Dietary sodium butyrate supplementation reduces high-concentrate diet feeding-induced apoptosis in mammary cells in dairy goats. Journal of Agricultural and Food Chemistry, 66(9), 2101–2107. https://doi.org/10.1021/acs.jafc.7b05882
- Nudda, A., Cannas, A., Correddu, F., Atzori, A., Lunesu, M., Battacone, G., … & Pulina, G. (2020). Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals, 10(8), 1290. https://doi.org/10.3390/ani10081290
- Mehaba, N., Salama, A., Such, X., Albanell, E., & Caja, G. (2019). Lactational responses of heat-stressed dairy goats to dietary l-carnitine supplementation. Animals, 9(8), 567. https://doi.org/10.3390/ani9080567
- Liang, J. and Paengkoum, P. (2019). Current status, challenges and the way forward for dairy goat production in asia – conference summary of dairy goats in asia. Asian-Australasian Journal of Animal Sciences, 32(8), 1233–1243. https://doi.org/10.5713/ajas.19.0272
- Battini, M., Barbieri, S., Vieira, A., Stilwell, G., & Mattiello, S. (2016). Results of testing the prototype of the awin welfare assessment protocol for dairy goats in 30 intensive farms in northern italy. Italian Journal of Animal Science, 15(2), 283–293. https://doi.org/10.1080/1828051x.2016.1150795
- Goetsch, A. (2019). Recent advances in the feeding and nutrition of dairy goats. Asian-Australasian Journal of Animal Sciences, 32(8), 1296–1305. https://doi.org/10.5713/ajas.19.0255
- Gheorghe-Irimia, R. A., Tăpăloagă, D., Tăpăloagă, P. R., Ilie, L. I., Șonea, C., Serban, A. I. (2022). Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods, 11(22), 3666.
- Tudor, L., Pițuru, M. T., Gheorghe-Irimia, R. A., Șonea, C., & Tăpăloagă, D. (2023). Optimizing milk production, quality and safety through essential oil applications. Farmacia, 71(5)
- Irimia, R. A., Georgescu, M., Tudoreanu, L., & Militaru, M. (2020). Testing The Effect Of Nigella Sativa Essential Oil Solution On Chicken Breast pH And Total Volatile Base Nitrogen During Refrigeration. Scientific Works. Series C, Veterinary Medicine, 66(2).