References
- Aguirre L, Portillo MP, Hijona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol. 2014;20:7366–7380. doi.org/10.3748/wjg.v20.i23.7366.
- Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45:413–421. doi.org/10.1111/1440-1681.12886.
- Akerman KE, Wikström MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68:191–197. https://doi.org/10.1016/0014-5793(76)80434-6.
- Al-Dosari MS. Red cabbage (Brassica oleracea L.) mediates redox-sensitive amelioration of dyslipidemia and hepatic injury induced by exogenous cholesterol administration. Am J Chin Med. 2014;42:189–206. doi.org/10.1142/S0192415X1450013X.
- Aza-González C, Ochoa-Alejo N. Characterization of anthocyanins from fruits of two Mexican chili peppers (Capsicum annuum L.). J Mex Chem Soc. 2012;56:149–151. doi.org/10.29356/jmcs.v56i2.313.
- Bartlett PJ, Antony AN, Agarwal A, et al. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes. J Physiol. 2017;595:3143–3164. doi.org/10.1113/JP273891.
- Bendokas V, Skemiene K, Trumbeckaite S, et al. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr. 2020;60:3352–3365. doi.org/10.1080/10408398.2019.1687421.
- Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the field to the antioxidants in the body. Antioxidants (Basel). 2020;9:819. doi.org/10.3390/antiox9090819.
- Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26:249–261. doi.org/10.1016/j.tcb.2015.12.002.
- Buko V, Kuzmitskaya I, Kirko S, et al. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis. Physiol Int. 2019;106:323–334. doi.org/10.1556/2060.106.2019.26.
- Buko V, Zavodnik I, Kanuka O, et al. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food Funct. 2018;9:1850–1863. doi.org/10.1039/c7fo01823a.
- Chacko BK, Srivastava A, Johnson MS, et al. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatol. 2011;54:153–163. doi.org/10.1002/hep.24377.
- de Ferrars RM, Czank C, Zhang Q, et al. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171:3268–3282. doi.org/10.1111/bph.12676.
- Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021;365:130482. doi.org/10.1016/j.foodchem.2021.130482.
- Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-induced mitochondrial permeability transitions: Parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. J Membr Biol. 2017;250:225–236. doi.org/10.1007/s00232-017-9953-2.
- Hao L, Sun Q, Zhong W, Zhang W, Sun X, Zhou Z. Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biol. 2018;14:626–636. doi.org/10.1016/j.redox.2017.11.005.
- Hassimoto NMA, Genovese MI, Laiolo FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem. 2005;53:2928–2935. doi.org/10.1021/jf047894h.
- Hoek JB, Pastorino JG. Cellular signaling mechanisms in alcohol-induced liver damage. Semin Liver Dis. 2004;24:257–272. doi.org/10.1055/s-2004-832939.
- Hou Z, Qin P, Ren G. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. japonica) on chronically alcohol-induced liver damage in rats. J Agric Food Chem. 2010;58:3191–3196. https://doi.org/10.1021/jf904407x.
- Johnson D, Lardy HA. Isolation of liver or kidney mitochondria. Meth Enzymol. 1967;10:94–101.
- Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61:1361779. doi.org/10.1080/16546628.2017.1361779.
- Lapshina EA, Zamaraeva M, Cheshchevik VT, et al. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro. Cell Biochem Funct. 2015;33:202–210. doi.org/10.1002/cbf.3104.
- Lieber CS, DeCarli LM. Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol. 1989;24:197–211.
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi.org/10.1016/S0021-9258(19)52451-6
- Lukivskaya OY, Naruta E, Sadovnichy V, Kirko S, Buko VU. Reversal of experimental ethanol-induced liver steatosis by borage oil. Phytother Res. 2012;26:1626–1631. doi.org/10.1002/ptr.4621.
- Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med. 2008;44:1259–1272. doi.org/10.1016/j.freeradbiomed.2007.12.029.
- Mathews S, Xu M, Wang H, Bertola A, Gao B. Animals models of gastrointestinal and liver diseases. Animal models of alcohol-induced liver disease: Pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol. 2014;306:G819–G823. doi.org/10.1152/ajpgi.00041.2014.
- McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry. 2007;68:1285–1294. doi.org/10.1016/j.phytochem.2007.02.004.
- Moore AL, Bonner WD. Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol. 1982;70:1271–1276. doi.org/10.1104/pp.70.5.1271.
- Ni M-M, Xu T, Wang, Y-R, et al. Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells. J Physiol Biochem. 2016;72:9–23. doi.org/10.1007/s13105-015-0452-6.
- Pan JH, Lim Y, Kim JH, et al. Root bark of Ulmus davidiana var. japonica restrains acute alcohol-induced hepatic steatosis onset in mice by inhibiting ROS accumulation. PLoS One. 2017;12:e0188381. doi.rg/10.1371/journal.pone.0188381.
- Pastorino JG, Hoek JB. Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatol. 2000;31:1141–1152. doi.org/10.1053/he.2000.7013.
- Rizzuto R, Stefani DD, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–578. doi.org/10.1038/nrm3412.
- Sozio M, Crabb DW. Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab. 2008;295:E10–E16. doi.org/10.1152/ajpendo.00011.2008.
- Tang CC, Lin WL, Lee YJ, Tang YC, Wang CJ. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL/6J mice. Food Funct. 2014;5:678–687. doi.org/10.1039/c3fo60478k.
- Teschke R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines. 2018;6:106. doi.org/10.3390/biomedicines6040106.
- Tong T, Niu YH, Yue Y, Wu S-C, Ding H. Beneficial effects of anthocyanins from red cabbage (Brassica oleracea L. var. capitata L.) administration to prevent irinotecan-induced mucositis. J Funct Foods. 2017;32:9–17. doi.org/10.1016/j.jff.2017.01.051.
- Xiao T, Luo Z, Guo Z, et al. Multiple roles of black raspberry anthocyanins protecting against alcoholic liver Disease. Molecules. 2021;26:2313. doi.org/10.3390/molecules26082313.
- Xu J, Cai Y, Wang H, et al. Fat-specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterol. 2015;149:1030–1041. doi.org/10.1053/j.gastro.2015.06.009.
- Zavodnik IB, Buko V, Lukivskaya O, et al. Cranberry (Vaccinium macrocarpon) peel polyphenol-rich extract attenuates rat liver mitochondria impairments in alcoholic steatohepatitis in vivo and after oxidative treatment in vitro. J Funct Foods. 2019;57:83–94. doi.org/10.1016/j.jff.2019.04.001.
- Zuo A, Wang S, Liu L, Yao Y, Guo J. Understanding the effect of anthocyanin extracted from Lonicera caerulea L. on alcoholic hepatosteatosis. Biomed Pharmacother. 2019;117:109087. doi.org/10.1016/j.biopha.2019.109087.