Have a personal or library account? Click to login
Anthocyanin-Rich Extract of Red Cabbage Attenuates Advanced Alcohol Hepatotoxicity in Rats in Association with Mitochondrial Activity Modulation Cover

Anthocyanin-Rich Extract of Red Cabbage Attenuates Advanced Alcohol Hepatotoxicity in Rats in Association with Mitochondrial Activity Modulation

Open Access
|Aug 2022

References

  1. Aguirre L, Portillo MP, Hijona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol. 2014;20:7366–7380. doi.org/10.3748/wjg.v20.i23.7366.
  2. Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45:413–421. doi.org/10.1111/1440-1681.12886.
  3. Akerman KE, Wikström MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68:191–197. https://doi.org/10.1016/0014-5793(76)80434-6.
  4. Al-Dosari MS. Red cabbage (Brassica oleracea L.) mediates redox-sensitive amelioration of dyslipidemia and hepatic injury induced by exogenous cholesterol administration. Am J Chin Med. 2014;42:189–206. doi.org/10.1142/S0192415X1450013X.
  5. Aza-González C, Ochoa-Alejo N. Characterization of anthocyanins from fruits of two Mexican chili peppers (Capsicum annuum L.). J Mex Chem Soc. 2012;56:149–151. doi.org/10.29356/jmcs.v56i2.313.
  6. Bartlett PJ, Antony AN, Agarwal A, et al. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes. J Physiol. 2017;595:3143–3164. doi.org/10.1113/JP273891.
  7. Bendokas V, Skemiene K, Trumbeckaite S, et al. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr. 2020;60:3352–3365. doi.org/10.1080/10408398.2019.1687421.
  8. Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the field to the antioxidants in the body. Antioxidants (Basel). 2020;9:819. doi.org/10.3390/antiox9090819.
  9. Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26:249–261. doi.org/10.1016/j.tcb.2015.12.002.
  10. Buko V, Kuzmitskaya I, Kirko S, et al. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis. Physiol Int. 2019;106:323–334. doi.org/10.1556/2060.106.2019.26.
  11. Buko V, Zavodnik I, Kanuka O, et al. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food Funct. 2018;9:1850–1863. doi.org/10.1039/c7fo01823a.
  12. Chacko BK, Srivastava A, Johnson MS, et al. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatol. 2011;54:153–163. doi.org/10.1002/hep.24377.
  13. de Ferrars RM, Czank C, Zhang Q, et al. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171:3268–3282. doi.org/10.1111/bph.12676.
  14. Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021;365:130482. doi.org/10.1016/j.foodchem.2021.130482.
  15. Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-induced mitochondrial permeability transitions: Parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. J Membr Biol. 2017;250:225–236. doi.org/10.1007/s00232-017-9953-2.
  16. Hao L, Sun Q, Zhong W, Zhang W, Sun X, Zhou Z. Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biol. 2018;14:626–636. doi.org/10.1016/j.redox.2017.11.005.
  17. Hassimoto NMA, Genovese MI, Laiolo FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem. 2005;53:2928–2935. doi.org/10.1021/jf047894h.
  18. Hoek JB, Pastorino JG. Cellular signaling mechanisms in alcohol-induced liver damage. Semin Liver Dis. 2004;24:257–272. doi.org/10.1055/s-2004-832939.
  19. Hou Z, Qin P, Ren G. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. japonica) on chronically alcohol-induced liver damage in rats. J Agric Food Chem. 2010;58:3191–3196. https://doi.org/10.1021/jf904407x.
  20. Johnson D, Lardy HA. Isolation of liver or kidney mitochondria. Meth Enzymol. 1967;10:94–101.
  21. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61:1361779. doi.org/10.1080/16546628.2017.1361779.
  22. Lapshina EA, Zamaraeva M, Cheshchevik VT, et al. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro. Cell Biochem Funct. 2015;33:202–210. doi.org/10.1002/cbf.3104.
  23. Lieber CS, DeCarli LM. Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol. 1989;24:197–211.
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi.org/10.1016/S0021-9258(19)52451-6
  25. Lukivskaya OY, Naruta E, Sadovnichy V, Kirko S, Buko VU. Reversal of experimental ethanol-induced liver steatosis by borage oil. Phytother Res. 2012;26:1626–1631. doi.org/10.1002/ptr.4621.
  26. Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med. 2008;44:1259–1272. doi.org/10.1016/j.freeradbiomed.2007.12.029.
  27. Mathews S, Xu M, Wang H, Bertola A, Gao B. Animals models of gastrointestinal and liver diseases. Animal models of alcohol-induced liver disease: Pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol. 2014;306:G819–G823. doi.org/10.1152/ajpgi.00041.2014.
  28. McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry. 2007;68:1285–1294. doi.org/10.1016/j.phytochem.2007.02.004.
  29. Moore AL, Bonner WD. Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol. 1982;70:1271–1276. doi.org/10.1104/pp.70.5.1271.
  30. Ni M-M, Xu T, Wang, Y-R, et al. Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells. J Physiol Biochem. 2016;72:9–23. doi.org/10.1007/s13105-015-0452-6.
  31. Pan JH, Lim Y, Kim JH, et al. Root bark of Ulmus davidiana var. japonica restrains acute alcohol-induced hepatic steatosis onset in mice by inhibiting ROS accumulation. PLoS One. 2017;12:e0188381. doi.rg/10.1371/journal.pone.0188381.
  32. Pastorino JG, Hoek JB. Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatol. 2000;31:1141–1152. doi.org/10.1053/he.2000.7013.
  33. Rizzuto R, Stefani DD, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–578. doi.org/10.1038/nrm3412.
  34. Sozio M, Crabb DW. Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab. 2008;295:E10–E16. doi.org/10.1152/ajpendo.00011.2008.
  35. Tang CC, Lin WL, Lee YJ, Tang YC, Wang CJ. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL/6J mice. Food Funct. 2014;5:678–687. doi.org/10.1039/c3fo60478k.
  36. Teschke R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines. 2018;6:106. doi.org/10.3390/biomedicines6040106.
  37. Tong T, Niu YH, Yue Y, Wu S-C, Ding H. Beneficial effects of anthocyanins from red cabbage (Brassica oleracea L. var. capitata L.) administration to prevent irinotecan-induced mucositis. J Funct Foods. 2017;32:9–17. doi.org/10.1016/j.jff.2017.01.051.
  38. Xiao T, Luo Z, Guo Z, et al. Multiple roles of black raspberry anthocyanins protecting against alcoholic liver Disease. Molecules. 2021;26:2313. doi.org/10.3390/molecules26082313.
  39. Xu J, Cai Y, Wang H, et al. Fat-specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterol. 2015;149:1030–1041. doi.org/10.1053/j.gastro.2015.06.009.
  40. Zavodnik IB, Buko V, Lukivskaya O, et al. Cranberry (Vaccinium macrocarpon) peel polyphenol-rich extract attenuates rat liver mitochondria impairments in alcoholic steatohepatitis in vivo and after oxidative treatment in vitro. J Funct Foods. 2019;57:83–94. doi.org/10.1016/j.jff.2019.04.001.
  41. Zuo A, Wang S, Liu L, Yao Y, Guo J. Understanding the effect of anthocyanin extracted from Lonicera caerulea L. on alcoholic hepatosteatosis. Biomed Pharmacother. 2019;117:109087. doi.org/10.1016/j.biopha.2019.109087.
Language: English
Page range: 5 - 16
Submitted on: Nov 3, 2021
Accepted on: Feb 24, 2022
Published on: Aug 23, 2022
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2022 V. Buko, E. Belonovskaya, T. Kavalenia, T. Ilyich, S. Kirko, I. Kuzmitskaya, V. Moroz, E. Lapshina, A. Romanchuk, I. Zavodnik, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.