References
- Abrahamson HB, Rezvani AB, Brushmiller JG. Photochemical and spectroscopic studies of complexes of iron(II1) with citric acid and other carboxylic acids. Inorg Chim Acta. 1994;226:117–127.
- Alessio E. Thirty years of the drug candidate NAMI-A and the myths in the field of ruthenium anticancer compounds: a personal perspective. Eur J Inorg Chem. 2017;2017:1549–1560.
- Ali I, Wani WA, Saleem K. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth React Inorg Met-Org Chem. 2013;43:1162–1170.
- Bacchi CJ, Ciaccio EI, Koren LE. Effects of some antitumor agents on growth and glycolytic enzymes of the flagellate Crithidia. J Bacteriol. 1969;98:23–28.
- Baggio R, Perec M. Isolation and characterization of a polymeric lanthanum citrate. Inorg Chem. 2004;43:6965–6968.
- Baker EN, Baker HM, Anderson BF, Reeves RD. Chelation of nickel(II) by citrate. The crystal structure of a nickel-citrate complex, K2[Ni(C6H5O7)(H2O)2]2. Inorg Chim Acta. 1983;78:281–285.
- Bitha P, Child RG, Hlavka JJ, Lin Y. Platinum complexes of aliphatic tricarboxylic acid. EP0185225A1, Jun 25, 1986
- Boghaei DM, Najafpour MM. Crystal structure of Gua4[Cu2(Cit)2] {Gua = Guanidinium, Cit = Citrate = 2-hydroxo-1,2,3-tricarboxylatopropane}. Anal Sci. 2007;23:23–24.
- Borenfreund E.; Puerner JA. Cytotoxicity of metals, metal-metal and metal-chelator combinations assayed in vitro. Toxicology. 1986;39:121–134.
- Burdach M. Use of the white agaric in night perspirations. The Lancet. 1831;16:316.
- Carrano RA, Malone MH. Pharmacologic study of norcaperatic and agaricic acids. J Pharm Sci. 1967;56:1611–1614.
- Chávez E, Chávez R, Carrasco N. The effect of agaric acid on citrate transport in rat liver mitochondria. Life Sci. 1978;23:1423–1429.
- Ciaccio EI, Boxer GE, Devlin TM, Ford RT. Screening data from selected in vitro enzymatic systems I. Standard test compounds from the Cancer Chemotherapy Nation Service Center. Cancer Res. 1967;27:1033–1069.
- Ciaccio EI, Boxer GE, Devlin TM, Ford RT. Screening data from selected in vitro enzymatic systems II. Compounds specifically selected for the dehydrogenase inhibition screens. Cancer Res. 1967;27:1070–1104.
- de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans. 2020;49:16004–16033.
- Deng YF, Zhou ZH. Synthesis and crystal structure of a zinc citrate complex [Zn(H2cit)(H2O)]n. J Coord Chem. 2009;62:1484–1491.
- Drzewiecka A, Koziol AE, Lowczak M, Lis T. Poly[tetraaquadi-μ6-citrato-tetra-copper(II)]: a redetermination. Acta Cryst. 2007;E63:m2339–m2340.
- Field TB, McCourt JL, McBryde WAE. Composition and stability of iron and copper citrate complexes in aqueous solution. Can J Chem. 1974;52:3119–3124.
- Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010;16:1813–1825.
- Galanski M, Arion VB, Jakupec MA, Keppler BK. Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des. 2003;9:2078–2089.
- García N, Zazueta C, Pavón N, Chávez E. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion. 2005;5:272–281.
- Habala L, Devínsky F, Egger AE. Metal complexes as urease inhibitors. J Coord Chem. 2018;71:907–940.
- Hanif M, Hartinger CG. Anticancer metallodrugs: where is the next cisplatin? Future Med Chem. 2018;10:615–617.
- Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environ Microbiol. 2004;6:1220–1227.
- Huta B, Lensboeur JJ, Lowe AJ, Zubieta J, Doyle RP. Metal-citrate complex uptake and CitMHS transporters: From coordination chemistry to possible vaccine development. Inorg Chim Acta. 2012;393:125–134.
- Johnson A, Northcote-Smith J, Suntharalingam K. Emerging metallopharmaceuticals for the treatment of cancer. Trends Chem. 2021;3:47–58.
- Kilpin KJ, Dyson PJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci. 2013;4:1410–1419.
- Kumar RS, Paul P, Riyasdeen A, Wagniéres G, van den Bergh H, Akbarsha MA, Arunachalam S. Colloids Surf B Biointerfaces. 2011;86:35–44.
- Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–384.
- Lu L, Zhu M. Protein tyrosine phosphatase inhibition by metals and metal complexes. Antioxid Redox Signal. 2014;20: 2210–2224.
- Lukáč M, Lacko I, Bukovský M, Kyselová Z, Karlovská J, Horváth B, Devínsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Open Chem. 2010;8:194–201.
- Mastropaolo D, Powers DA, Potenza JA, Schugar HJ. Crystal structure and magnetic properties of copper citrate dihydrate, Cu2C6H4O7·2H2O. Inorg Chem. 1976;15:1444–1449.
- Miret S, De Groene EM, Klaffke W. Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. J Biomol Screen. 2006;11:184–193.
- Nagaraj K, Arunachalam S. Synthesis, CMC determination, nucleic acid binding and cytotoxicity of a surfactant-cobalt(iii) complex: Effect of ionic liquid additive. New J Chem. 2014;38:366–375.
- Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – an update from drug design perspective. Drug Des Devel Ther. 2017;11:599–616.
- Negm NA, Zaki MF. Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes. Colloids Surf B Biointerfaces. 2008;64:179–183.
- Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51:730–750.
- Palacios EG, Juárez-López G, Monhemius AJ. Infrared spectroscopy of metal carboxylates II. Analysis of Fe(III), Ni and Zn carboxylate solutions. Hydrometallurgy. 2004;72:139–148.
- Pierre JL, Gautier-Luneau I. Iron and citric acid: A fuzzy chemistry of ubiquitous biological relevance. BioMetals. 2000;13:91–96.
- Raspotnig G, Fauler G, Jantscher A, Windischhofer W, Schachl K, Leis HJ. Colorimetric determination of cell numbers by Janus green staining. Anal Biochem. 1999;275:74–83.
- Regiel-Futyra A, Dąbrowski JM, Mazuryk O, Śpiewak K, Kyzioł A, Pucelik B, Brindell M, Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev. 2017;351:76–117.
- Schattschneider C, Kettenmann SD, Hinojosa S, Heinrich J, Kulak N. Biological activity of amphiphilic metal complexes. Coord Chem Rev. 2019;385:191–207.
- Siewert B, Langerman M, Hontani Y, Kennis JTM, van Rixel VHS, Limburg B, Siegler MA, Talens Saez V, Kieltyka RE, Bonnet S. Turning on the red phosphorescence of a [Ru(tpy)(bpy)(Cl)]Cl complex by amide substitution: self-aggregation, toxicity, and cellular localization of an emissive ruthenium-based amphiphile. Chem Commun. 2017;53:11126–11129.
- Stamets P. Antiviral activity from medicinal mushrooms. US 2006/0171958 Al, Aug 3, 2006
- Vukosav P, Mlakar M, Tomišić V. Revision of iron(III)–citrate speciation in aqueous solution. Voltammetric and spectrophotometric studies. Analyt Chim Acta. 2012;745:85–91.
- Zabiszak M, Nowak M, Taras-Goslinska K, Kaczmarek MT, Hnatejko Z, Jastrzab R. Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J Inorg Biochem. 2018;182:37–47.
- Zhou ZH, Deng YF, Wan HL. Structural Diversities of Cobalt(II) Coordination Polymers with Citric Acid. Cryst Growth Des. 2005;5:1109–1117.
- Zhou ZH, Zhang H, Jiang YQ, Lin DH, Wan HL, Tsai KR. Complexation between vanadium(V) and citrate: spectroscopic and structural characterization of a dinuclear vanadium(V) complex. Trans Met Chem. 1999;24:605–609.