Have a personal or library account? Click to login
Synthesis, antibacterial and free radical scavenging activity of some newer N-((10-nitro-1H-indolo [1, 2-c]quinazolin-12-yl)methylene)benzenamines Cover

Synthesis, antibacterial and free radical scavenging activity of some newer N-((10-nitro-1H-indolo [1, 2-c]quinazolin-12-yl)methylene)benzenamines

By: A. Dixit,  D. Pathak and  G.K. Sharma  
Open Access
|Nov 2020

References

  1. Al-Hiari YM, Qaisi AM, El-Abadelah MM, Voelter W. Synthesis and antibacterial activity of some substituted 3-(aryl)-and 3-(heteroaryl) indoles. Monatshefte für Chemie/Chemical Monthly. 2006 Feb 1;137(2):243–8.
  2. Andreani A, Burnelli S, Granaiola M et al. Antitumor activity of bis-indole derivatives. J Med Chem. 2008; 51: 4563–4570.
  3. Bast A, Haenen G, Doelman C. Oxidants and antioxidants: state of the art. Am J Med. 1991; 92 (Suppl. 3C): 2–13.
  4. Bhovi MG, Gadaginamath GS. 1, 3-Dipolarcycloaddition reactions: Synthesis and antimicrobial activity of novel 1-triazolylindole and 1-triazolylbenz-[g]indole derivatives. Indian J Chem. 2005; 44B: 1068–1073.
  5. Billimoria AD, Cava MP. Chemistry of Indolo [1, 2-c]quinazoline: An approach to the marine alkaloid Hinckdentine A. J Org Chem. 1994; 59: 6777–6782.
  6. Bulkley GB. Free radicals and other reactive oxygen metabolites: Clinical relevance and the therapeutic efficacy of antioxidant therapy. Surgery. 1993; 113: 479–483.
  7. Chodvadiya VD, Pambhar KD, Parmar ND, Dhamsaniya AP, Chhatbar PV, Ram HN, Khunt RC, Patel PK. Synthesis and Characterization of N-Methyl Indole Derivatives via Desulfitative Displacement by Various Amines and Its Antimicrobial Activity. World Scientific News. 2019; 120(2):181–91.
  8. Cihan-Üstündağ G, Naesens L, Şatana D, Erköse-Genç G, Mataracı-Kara E, Çapan G. Design, synthesis, antitubercular and antiviral properties of new spirocyclic indole derivatives. Monatshefte für Chemie-Chemical Monthly. 2019;150(8):1533–44.
  9. Cross CE, Vliet A, Neill ACO, Eiserich JP. Reactive oxygen species and the lung. Lancet. 1994; 344: 930–933.
  10. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys. 2004; 423: 12–22.
  11. Dekker WH, Selling HA, Overeem JC. Structure-activity relationships of some antifungal indoles. J Agric Food Chem. 1975; 23: 785–791.
  12. Demurtas M, Baldisserotto A, Lampronti I, Moi D, Balboni G, Pacifico S, Vertuani S, Manfredini S, Onnis V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorganic chemistry. 2019 Apr 1;85:568–76.
  13. Donawade DS, Gadaginamath GS. Some electrophilic substitution reactions on 1-substituted-3-acetyl/carbethoxy-5-hydroxy-2-methylindole and antimicrobial activity of these new indole derivatives. Indian J Chem. 2005; 44B: 1679–1685.
  14. El Sayed MT, Sabry NM, Mahmoud K, Mahrous KF, Ali MM, Mahmoud AE, Voronkov A. Novel Nitro-Heterocycles Sugar and Indoles Candidates as Lead Structures Targeting HepG2 and A549 Cancer Cell Lines. Current Bioactive Compounds. 2018 Dec 1;14(4):434–44.
  15. Gadaginamath GS, Kavali RR. Synthesis and antimicrobial activity of novel 4H-pyrano [2, 3-f]-indole derivatives. Indian J Chem. 1999; 38B: 178–182.
  16. Gaikwad R, Bobde Y, Ganesh R, Patel T, Rathore A, Ghosh B, Das K, Gayen S. 2-Phenylindole derivatives as anticancer agents: synthesis and screening against murine melanoma, human lung and breast cancer cell lines. Synthetic Communications. 2019 Jun 17:1–2.
  17. Ghosh AK, Gong G, Grum-Tokars V, Mulhearn DC, Baker SC, Coughlin M, Prabhakar BS, Sleeman K., Johnson ME, Mesecar AD. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg Med Chem Lett. 2008; 18: 5684–5688.
  18. Gupta L, Talwar A, Chauhan PMS. Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem. 2007; 14: 1789–1803.
  19. Gurkok G, Altanlar N, Suzen S. Investigation of antimicrobial activities of Indole-3-Aldehyde Hydrazide/Hydrazone Derivatives. Chemotherapy. 2009; 55, 15–19.
  20. Halliwell B, Gutteridge M. Free radicals in biology and medicine, third ed. Oxford Science Publications. Oxford University Press. 1998.
  21. Halliwell B, Hoult JR, Blake DR. Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 1988; 2: 2867–2873.
  22. Karah N, Gursoy A, Kandemirli F, Shvets N, Kaynak FB, Ozbey S, Kovalishyn V, Dimoglo A. Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg Med Chem. 2007; 15: 5888–5891.
  23. Kaushik N, Kumar N, Kumar A. Synthesis, antioxidant and antidiabetic activity of 1-[(5-substituted phenyl)-4,5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole. Indian J Pharm Sci. 2016; 78(3): 352–359.
  24. Kodisundaram P, Amirthaganesan S, Balasankar T. Antimicrobial evaluation of a set of heterobicyclic methylthiadiazole hydrazones: synthesis, characterization, and SAR studies. Journal of agricultural and food chemistry. 2013 Nov 27;61(49):11952–6
  25. Macchia M, Manera C, Nencetti S, Rossello A, Broccali G, Limonta D. Synthesis and antimicrobial activity of benzo[a] dihydrocarbazole and benzotetrahydrocyclohept [1,2b]indole derivatives. Farmaco. 1996; 51: 75–78.
  26. Malesani G, Chiarelotto G, Dallacqua F, Vedali D. Antimicrobial properties of some 3-acyl-4,7-disubstituted indoles. Farmaco. 1975; 30: 137–146.
  27. Malviya R, Sharma PK, Dubey SK. Antioxidant potential and emulsifying properties of kheri (Acacia chundra, Mimosaceae) gum polysaccharide. Marm Pharm J. 2017; 21/3: 701–706.
  28. Mathada BSD, Mathada MBH. Synthesis and antimicrobial activity of some 5-substituted-3-phenyl-Nb-(Substituted-2-oxo-2H-pyrano [2,3-b]quinoline-3-carbonyl)-1H-indole-2-carboxyhydrazide. Chem Pharm Bull. 2009; 57: 557–560.
  29. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance, Clin Biochem. 1993; 26: 351–357.
  30. Mouithys-Mickalad AML, Zheng SX, Deby-Dupont GP, Deby CM, Lamy MM, Reginster JY, Henrotin YE. Invitro study of the antioxidant properties of nonsteroidal anti-inflammatory drugs by chemiluminescence and electron spin resonance (ESR). Free Radic Res. 2000; 33: 607–621.
  31. Nikolic D, Breemen RB. DNA Oxidation Induced by Cyclooxygenase-2, Chem Res Toxicol. 2001; 14: 351–354.
  32. Ningsih IY, Zulaikhah S, Hidayat MA, Kuswandi B. Antioxidant activity of various Kenitu (Chrysophyllum cainito L.) leaves extracts from Jember. Indonesia Agric Sci Procedia. 2016; 9: 378–85.
  33. Ran J, Huang N, Xu H, Yang Y, Lv M, Zheng YT. Anti HIV-1 agents 5: Synthesis and anti-HIV-1 activity of some N-arylsulfonyl-3-acetylindoles. Bioorg Med Chem. Lett. 2010; 20: 3534–3536.
  34. Santrucek M, Krepelka J. Antioxidants from the aspect of their potential use in chemotherapy. Drugs Future. 1988; 37: 121–128.
  35. Santrucek M, Krepelka J. Of particular interests are the potential protective effects of antioxidants on lipoproteins, since oxidized LDL is thought to be atherogenic, Drugs Future. 1988; 13: 973–996.
  36. Shirinzadeh H, SÜZEN S, Altanlar N, Westwell AD. Antimicrobial Activities of New Indole Derivatives Containing 1, 2, 4-Triazole, 1, 3, 4-Thiadiazole and Carbothioamide. Turkish Journal of Pharmaceutical Sciences. 2018;15(3).
  37. Slater MJ, Baxter R, Bonser RW, Cockerill S, Gohil K, Parry N, Robinson E, Randall R, Yeates C, Snowden W, Walters A. Synthesis of N-alkyl substituted indolocarbazoles as potent inhibitors of human cytomegalovirus replication. Bioorg Med Chem Lett. 2001; 11: 1993–95.
  38. Somei M, Yamada F. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep. 2003; 20: 216–242.
  39. Sravanthi T, Rani S, Manju S. Synthesis and biological evaluation of 2-(2′/3′/4′/6′-substituted phenyl)-1H-indoles. Int J Pharm Pharmac Sc. 2015; 7(11): 268–73
  40. Sreejayan N, Rao MN. Free radical scavenging activity of curcuminoids, Drug Res. 1996; 46: 169–171.
  41. Sreenivasulu R, Reddy KT, Sujitha P, Kumar CG, Raju RR. Synthesis, antiproliferative and apoptosis induction potential activities of novel bis (indolyl) hydrazide-hydrazone derivatives. Bioorganic & medicinal chemistry. 2019 Mar 15;27(6):1043–55.
  42. Tsotinis A, Varvaresou A, Calogeropoulou T, Siatra-Papastaikoudi T, Tiligada A. Synthesis and antimicrobial evaluation of indole containing derivatives of 1,3,4-triazole and their open-chain counterparts. Drug Res. 1997; 47: 307–310.
  43. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552: 335–344.
  44. Ugur A, Mercimek B, Ozler MA, Aahin N. Antimicrobial effects of bis (2-imidazolinyl)-5,5V-dioxime and its mono- and tri-nuclear complexes. Transit Met Chem. 2000; 25, 421.
  45. Vapaatalo H. Free radicals and anti-inflammatory drugs. Med Biol. 1986; 64: 1–7;
  46. Varvaresou A, Tsantili-Kakoulidou A, Siatra-Papastaikoudi T, Tiligada E. Synthesis and biological evaluation of indole containing derivatives of thiosemicarbazide and their cyclic 1,2,4-triazole and 1,3,4-thiadiazole analogs, Drug Res. 2000; 50: 48–54.
  47. Whitehead CW, Whitesitt AA. Effects of lipophilic substituents on some biological properties of indoles. J Med Chem. 1974; 17: 1298–1304.
  48. Williams JD, Chen JJ, Drach JC, Townsend LB. Synthesis and antiviral activity of 3-formyl- and 3-Cyano-2,5,6-trichloroindole nucleoside derivatives, J Med Chem. 2004; 47: 5766–5772.
  49. Xu H, Lv M. Developments of indoles as anti-HIV-1 inhibitors. Curr Pharm Des. 2009; 15: 2120–2148.
Language: English
Page range: 7 - 16
Submitted on: Feb 20, 2019
Accepted on: Dec 11, 2019
Published on: Nov 18, 2020
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2020 A. Dixit, D. Pathak, G.K. Sharma, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.