Have a personal or library account? Click to login
Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning Cover

Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning

Open Access
|Dec 2021

References

  1. 1. I.A. Figueroa, I. Betancourt, G. Lara, J.A. Verduzco, Effect of B, Si and Cr on the mechanical properties of Fe-based amorphous metallic ribbons, J. Non. Cryst. Solids. 351 (2005) 3075–3080. https://doi.org/10.1016/j.jnoncrysol.2005.07.017.10.1016/j.jnoncrysol.2005.07.017
  2. 2. L. Guo, S. Geng, X. Gao, W. Wang, Numerical simulation of heat transfer and fluid flow during nanosecond pulsed laser processing of Fe78Si9B13 amorphous alloys, Int. J. Heat Mass Transf. 170 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121003.10.1016/j.ijheatmasstransfer.2021.121003
  3. 3. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279–306. https://doi.org/10.1016/S1359-6454(99)00300-6.10.1016/S1359-6454(99)00300-6
  4. 4. S. Cui, H. Zhai, W. Li, X. Fan, X. Li, W. Ning, D. Xiong, Microstructure and corrosion resistance of Fe-based amorphous coating prepared by detonation spray, Surf. Coat. Technol. 399 (2020) 126096. https://doi.org/10.1016/j.surfcoat.2020.126096.10.1016/j.surfcoat.2020.126096
  5. 5. M.F. Kilicaslan, S.I. Elburni, B. Akgul, The effects of nb addition on the microstructure and mechanical properties of melt spun Al-7075 alloy, Adv. Mater. Sci. 21 (2021) 17–19. https://doi.org/10.2478/adms-2021-0008.10.2478/adms-2021-0008
  6. 6. L. Zhu, S.S. Jiang, Z.Z. Yang, G.B. Han, S.S. Yan, Y.G. Wang, Magnetic properties of a Febased amorphous alloy with stress gradient, J. Magn. Magn. Mater. 519 (2021) 167513. https://doi.org/10.1016/j.jmmm.2020.167513.10.1016/j.jmmm.2020.167513
  7. 7. C. Chang, T. Kubota, A. Makino, A. Inoue, Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Si–B–P–C system, J. Alloys Compd. 473 (2009) 368–372. https://doi.org/10.1016/j.jallcom.2008.05.088.10.1016/j.jallcom.2008.05.088
  8. 8. A. Makino, H. Men, T. Kubota, K. Yubota, A. Inoue, FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing hetero-amorphous phase, Mater. Trans. 50 (2009) 204-209. https://doi.org/10.2320/matertrans.MER2008306.10.2320/matertrans.MER2008306
  9. 9. P. Duwez, R. H. Willens, W. Klement, Continuous Series of Metastable Solid Solutions in Silver Copper Alloys, J. Appl. Phys. 31 (1960) 1136. https://doi.org/10.1063/1.1735777.10.1063/1.1735777
  10. 10. X. Jia, Y. Li, L. Wu, W. Zhang, A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys, J. Alloys Compd. 822 (2020) 152784. https://doi.org/10.1016/j.jallcom.2019.152784.10.1016/j.jallcom.2019.152784
  11. 11. M. Ohta, Y. Yoshizawa, Cu addition effect on soft magnetic properties in Fe-Si-B alloy system, J. Appl. Phys. 103 (2008) 07E722. 722 (2015). https://doi.org/10.1063/1.2829240.10.1063/1.2829240
  12. 12. Y. Zhang, P. Sharma, A. Makino, Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy, IEEE Trans. Magn. 50 (2014) 2003004.10.1109/TMAG.2013.2286617
  13. 13. A. Inoue, A. Takeuchi, T. Zhang, Ferromagnetic bulk amorphous alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29 (1998) 1779–1793. https://doi.org/10.1007/s11661-998-0001-9.10.1007/s11661-998-0001-9
  14. 14. C. Si, Z. Zhang, Q. Zhang, J. Cai, Influence of mechanical alloying on the particle size, microstructure and soft magnetic properties of coarse Fe-based amorphous powders prepared by gas atomization, J. Non. Cryst. Solids. 559 (2021) 120675. https://doi.org/10.1016/j.jnoncrysol.2021.120675.10.1016/j.jnoncrysol.2021.120675
  15. 15. S. Cui, G. Ouyang, T. Ma, C. R. Macziewski, V. I. Levitas, L. Zhou, M. J. Kramer, J. Cui, Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy, J. Alloys Compd. 771 (2019) 643–648. https://doi.org/10.1016/J.JALLCOM.2018.08.293.10.1016/j.jallcom.2018.08.293
  16. 16. Y.F. Liang, S. Wang, H. Li, Y.M. Jiang, F. Ye, J. P. Lin, Fabrication of Fe-6.5wt%Si Ribbons by Melt Spinning Method on Large Scale, Adv. Mater. Sci. Eng. 2015 (2015). https://doi.org/10.1155/2015/296197.10.1155/2015/296197
  17. 17. S. Wang, Y. M. Jiang, Y. F. Liang, F. Ye, J. P. Lin, Magnetic properties and core loss behavior of Fe-6.5wt.%Si ribbons prepared by melt spinning, Adv. Mater. Sci. Eng. 2015 (2015). https://doi.org/10.1155/2015/410830.10.1155/2015/410830
  18. 18. M. Imani, M. H. Enayati, Investigation of amorphous phase formation in Fe-Co-Si-B-P-Thermodynamic analysis and comparison between mechanical alloying and rapid solidification experiments, J. Alloys Compd. 705 (2017) 462–467. https://doi.org/10.1016/j.jallcom.2017.02.100.10.1016/j.jallcom.2017.02.100
  19. 19. A. Inoue, T. Masumoto, Mg-based amorphous alloys, Mater. Sci. Eng. A. 173 (1993) 1–8. https://doi.org/10.1016/0921-5093(93)90175-E.10.1016/0921-5093(93)90175-E
  20. 20. T. Tamura, M. Li, Influencing factors on the amorphous phase formation in Fe–7.7 at% Sm alloys solidified by high-speed melt spinning, J. Alloys Compd. 826 (2020) 154010. https://doi.org/10.1016/j.jallcom.2020.154010.10.1016/j.jallcom.2020.154010
  21. 21. G. Ennas, M. Magini, F. Padella, P. Susini, G. Boffitto, G. Licheri, Preparation of amorphous Fe-Zr alloys by mechanical alloying and melt spinning methods - Part 1 A structural comparison, J. Mater. Sci. 24 (1989) 3053–3058. https://doi.org/10.1007/BF01139017.10.1007/BF01139017
  22. 22. C. Wu, K. Lin, Y. Cheng, C. Huang, C. Pan, W. Li, L. Chiang, C. Yeh, S. Fong, Development of Amorphous Ribbon Manufacturing Technology, China Steel Tech. Rep. (2014) 28–42.
  23. 23. G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials, Acta Mater. 61 (2013) 718–734. https://doi.org/10.1016/j.actamat.2012.10.040.10.1016/j.actamat.2012.10.040
  24. 24. X. D. Fan, B.L. Shen, Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system, J. Magn. Magn. Mater. 385 (2015) 277–281. https://doi.org/10.1016/j.jmmm.2015.03.033.10.1016/j.jmmm.2015.03.033
  25. 25. N. Yodoshi, S. Ookawa, R. Yamada, N. Nomura, K. Kikuchi, A. Kawasaki, Effects of nanocrystallisation on saturation magnetisation of amorphous Fe76Si9B10P5, Mater. Res. Lett. 6 (2018) 100–105. https://doi.org/10.1080/21663831.2017.1398191.10.1080/21663831.2017.1398191
  26. 26. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, T. Shoji, A. Kato, Nanocrystallization of amorphous alloys by ultra-rapid annealing: An effective approach to magnetic softening, J. Alloys Compd. 735 (2018) 613–618. https://doi.org/10.1016/j.jallcom.2017.11.110.10.1016/j.jallcom.2017.11.110
  27. 27. T. Kulik, Nanocrystallization of metallic glasses, J. Non. Cryst. Solids. 287 (2001) 145–161. https://doi.org/10.1016/S0022-3093(01)00627-5.10.1016/S0022-3093(01)00627-5
  28. 28. B. A. Luciano, C. S. Kiminami, An amorphous core transformer: Design and experimental performance, Mater. Sci. Eng. A. 226–228 (1997) 1079–1082. https://doi.org/10.1016/s0921-5093(96)10863-7.10.1016/S0921-5093(96)10863-7
  29. 29. F. Wan, T. Liu, F. Kong, A. Wang, M. Tian, J. Song, J. Zhang, C. Chang, X. Wang, Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys, Mater. Res. Bull. 96 (2017) 275–280. https://doi.org/10.1016/j.materresbull.2017.01.026.10.1016/j.materresbull.2017.01.026
  30. 30. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044–6046. https://doi.org/10.1063/1.342149.10.1063/1.342149
  31. 31. J. G. Wang, H. Zhao, C. X. Xie, C. T. Chang, S. M. Zhou, J. Q. Feng, J. T. Huo, W. H. Li, In-situ synthesis of nanocrystalline soft magnetic Fe-Ni-Si-B alloy, J. Alloys Compd. 790 (2019) 524–528. https://doi.org/10.1016/j.jallcom.2019.03.226.10.1016/j.jallcom.2019.03.226
  32. 32. E. Dastanpour, M. H. Enayati, A. Masood, V. Ström, Crystallization behavior, soft magnetism and nanoindentation of Fe-Si-B-P-Cu alloy on Ni substitution, J. Alloys Compd. 851 (2021) 156727. https://doi.org/10.1016/j.jallcom.2020.156727.10.1016/j.jallcom.2020.156727
  33. 33. Z. Li, Y. Wu, B. Zhuang, X. Zhao, Y. Tang, X. Ding, Preparation of novel copper-powder-sintered frame / paraffin form-stable phase change materials with extremely high thermal conductivity, Appl. Energy. 206 (2017) 1147–1157. https://doi.org/10.1016/j.apenergy.2017.10.046.10.1016/j.apenergy.2017.10.046
  34. 34. V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, S. G. Rassolov, The effect of the melt-spinning processing parameters on the rate of cooling, Mater. Sci. Eng. A. 323 (2002) 91–96. https://doi.org/10.1016/S0921-5093(01)01346-6.10.1016/S0921-5093(01)01346-6
  35. 35. O. Uzun, M. F. Kılıçaslan, F. Yılmaz, Formation of novel flower-like silicon phases and evaluation of mechanical properties of hypereutectic melt-spun Al-20Si-5Fe alloys with addition of V, Mater. Sci. Eng. A. 607 (2014) 368–375. https://doi.org/10.1016/j.msea.2014.04.025.10.1016/j.msea.2014.04.025
  36. 36. M. Çelebi, O. Güler, A. Çanakçı, H. Çuvalcı, The effect of nanoparticle content on the microstructure and mechanical properties of ZA27-Al2O3-Gr hybrid nanocomposites produced by powder metallurgy, J. Compos. Mater. 55 (2021) 3395–3408. https://doi.org/10.1177/00219983211015719.10.1177/00219983211015719
  37. 37. A. H. Karabacak, A. Çanakçı, F. Erdemir, S. Özkaya, M. Çelebi, Effect of different reinforcement on the microstructure and mechanical properties of AA2024-based metal matrix nanocomposites, Int. J. Mater. Res. 111 (2020) 416–423. https://doi.org/10.3139/146.111901.10.3139/146.111901
  38. 38. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6.10.1016/S1359-6454(99)00300-6
  39. 39. Y. L. Li, Z. X. Dou, X. M. Chen, K. Lv, F. S. Li, X.D. Hui, Improving the amorphous forming ability and magnetic properties of FeSiBPCu amorphous and nanocrystalline alloys by utilizing carbon, J. Alloys Compd. 844 (2020). https://doi.org/10.1016/j.jallcom.2020.155767.10.1016/j.jallcom.2020.155767
  40. 40. A. Inoue, A. Takeuchi, T. Zhang, A. Murakami, Soft Magnetic Properties of Bulk Fe-Based Amorphous Alloys Prepared by Copper Mold Casting, IEEE Trans. Magn. 32 (1996) 4866–4871.10.1109/20.539178
  41. 41. A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817-2829. https://doi.org/10.2320/matertrans.46.2817.10.2320/matertrans.46.2817
  42. 42. M. Ipatov, V. Zhukova, L. Dominguez, K.L. Alvarez, A. Chizhik, A. Zhukov, J. Gonzalez, Structural and low-temperature magnetic properties of as-quenched and annealed Ni–Si–B alloys produced by rapid solidification, Intermetallics. 132 (2021) 107140. https://doi.org/10.1016/j.intermet.2021.107140.10.1016/j.intermet.2021.107140
  43. 43. B. Q. Chi, C. Li, Z.H. Huang, Mixing entropy difference between liquid and crystal of Fe base amorphous alloys, J Non Cryst Solids. 402 (2014) 178–181. https://doi.org/10.1016/j.jnoncrysol.2014.05.032.10.1016/j.jnoncrysol.2014.05.032
  44. 44. L. Shi, X. Qin, K. Yao, Tailoring soft magnetic properties of Fe-based amorphous alloys through C addition, Prog. Nat. Sci. Mater. Int. 30 (2020) 208–212. https://doi.org/10.1016/j.pnsc.2020.02.001.10.1016/j.pnsc.2020.02.001
  45. 45. Q. Liu, H. Liu, M. Wang, Y. Zhang, Z. Ma, Y. Zhao, W. Yang, Effects of Ni substitution for Fe on magnetic properties of Fe80 - xNixP13C7 (x = 0-30) glassy ribbons, J. Non. Cryst. Solids. 463 (2017) 68–71. https://doi.org/10.1016/j.jnoncrysol.2017.03.005.10.1016/j.jnoncrysol.2017.03.005
  46. 46. J. Zhou, W. Yang, C. Yuan, B. Sun, B. Shen, Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties, J. Alloys Compd. 742 (2018) 318–324. https://doi.org/10.1016/j.jallcom.2018.01.317.10.1016/j.jallcom.2018.01.317
  47. 47. H. R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study, J. Non-Cryst. Solids. 391 (2014) 61–82. https://doi.org/10.1016/j.jnoncrysol.2014.03.010.10.1016/j.jnoncrysol.2014.03.010
  48. 48. T. Mizoguchi, K. Yamauchi, H. Miyajima, Ferromagnetism of Amorphous Iron Alloys. Proceedings of the International Symposium on Amorphous Magnetism, Detroit, Michigan, USA, 1973, 325–330. https://doi.org/10.1007/978-1-4613-4568-8_35.10.1007/978-1-4613-4568-8_35
  49. 49. W. Yang, H. Liu, L. Xue, J. Li, C. Dun, J. Zhang, Magnetic properties of (Fe1-xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses, J. Magn. Magn. Mater. 335 (2013) 172–176. https://doi.org/10.1016/j.jmmm.2013.02.004.10.1016/j.jmmm.2013.02.004
  50. 50. W. Yang, H. Liu, Y. Zhao, A. Inoue, K. Jiang, J. Huo, H. Ling, Q. Li, B. Shen, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity, Sci. Rep. 6233 (2014) 1-6. https://doi.org/10.1038/srep06233.10.1038/srep06233538582425167887
  51. 51. A. Mitra, R.K. Roy, B. Mahato, A.K. Panda, G. Vlasak, D. Janickovic, P. Svec, Development of FeSiB/CoSiB Bilayered Melt-spun Ribbon by Melt-spinning Technique, J. Supercond. Nov. Magn. 2010 241. 24 (2010) 611–615. https://doi.org/10.1007/S10948-010-0955-X.10.1007/s10948-010-0955-x
DOI: https://doi.org/10.2478/adms-2021-0026 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 79 - 89
Published on: Dec 30, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Muhammed Fatih Kılıçaslan, Yasin Yılmaz, Bekir Akgül, Hakan Karataş, Can Doğan Vurdu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.