1. Yamanoglu R., Khoshnaw F., Daoud I., Efendi E.: Effect of Silver Content on Wear and Mechanical Properties of Powder Metallurgical Ti-5Al-2.5Fe-xAg Alloys. J. Min. Metall. Sect. B-Metall 56 (1) (2020) 119-125.
2. Hou J., Chi F., Cui G., Chen W., Zhang W.: Strengthening effects of in-situ synthetic nano-TiC particles on Ti64 based nanocomposites through adding graphene nanoplatelets. Vacuum 177 (2020) 109-431.
4. Huang G., Lu W., Li H., Sun X., Zhang D.: Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB þ TiC þ La2O3)/Ti6Al4V composites. J. Alloys Compd. 699 (2017) 874-881.
5. Ataee A., Li Y., Wen C.: A comparative study on the nanoindentationbehavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroidscaffolds. Acta Biomater. 97 (2019) 587-596.
6. Gepreel M. A-H., Niinomi M.: Biocompatibility of Ti alloys for long term implantation. J. Mech. Behav. Biomed. Mater. 20 (2013) 407-415.10.1016/j.jmbbm.2012.11.01423507261
7. Liu W, Liu S, Wang L. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 9 (4) (2019) 249-272.
8. Alontseva D. L., Abilev M. B., Zhilkashinova A. M., Voinarovych S. G., Kyslytsia O. N., Ghassemieh E., Russakova A., Łatka L.: Оptimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants. Adv. Mater. Sci. 18(3) (57) (2018) 79-94.
11. Gao P., Fan B., Yu X., Liu W., Wu J., Shi L., Yang D., Tan L., Wan P., Hao Y., Li S., Hou W., Yang K., Lia X., Guo Z.: Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopaedic application. Bioact. Mater. 5 (2020) 680-693.
12. Jemat A., Ghazali M.J., Razali M., Otsuka Y.: Surface modifications and their effects on titanium dental implants. BioMed. Res. Int. 2015 (2015) 791-725.
13. Hou J., Chi F., Cui G., Chen W., Zhang W.: Strengtheningeffects of in-situ synthetic nano-TiC particles on Ti64 based nanocomposites through adding graphene nanoplatelets. Vacuum 177 (2020) 109-431.
15. Brończyk A., Kowalewski P., Samoraj M.: Tribocorrosion behaviour of Ti6Al4V and AISI 316L in simulated normal and inflammatory conditions. Wear 434-435 (2019) 202-966.
16. Sonekar M. M., Rathod W. S.: An experimental investigation on tribologial behavior of bio-implant material (SS-316 l & Ti6Al4V) for orthopaedic applications. Mater. Today-Proc. 19 (2) (2019) 444-447.
19. Obota I. B., Onyeachu I. B., Zeino A., and Umoren S. A.: Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research, J. Adhes. Sci. Technol., 33, (13) (2019) 1453–1496.
20. Ibrahim M.A.M., Abd El Rehim S.S., Hamza M.M.: Corrosion behavior of some austenitic stainless steels in chloride environments. Mater. Chem. Phys. 115 (2009) 80-85.
23. Yang Q., Luo J.L.: Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel. Electrochim. Acta 46 (6) (2001) 851-859.
27. Tsuchiya H., Fujimoto S., Chihara O., Shibata T.: Semi conductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochimica Acta 47 (2002) 4357-4366.
28. Hastuty S., Nishikata A., Tsuru T.: Pitting corrosion of type 430 stainless steel under chloride solution droplet. Corros. Sci. 52 (2010) 2035-2043.
33. John, A.A., Jaganathan S.K., Supriyanto E., Manikandan A.: Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr. Sci. 111 (2016) 1003–1015.