References
- W. Chen et al., “An overview on visual SLAM: From tradition to semantic,” Remote Sens., vol. 14, no. 13, Jun. 2022, Art. no. 3010. https://doi.org/10.3390/rs14133010
- C. Cadena et al., “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016. https://doi.org/10.1109/TRO.2016.2624754
- L. Lechelek, S. Horna, R. Zrour, M. Naudin, and C. Guillevin, “A hybrid method for 3D reconstruction of MR images,” Journal of Imaging, vol. 8, no. 4, 2022, Art. no. 103. https://doi.org/10.3390/jimaging8040103
- K. Hu, J. Wu, Y. Li, M. Lu, L. Weng, and M. Xia, “FedGCN: Federated learning-based graph convolutional networks for non-Euclidean spatial data,” Mathematics, vol. 10, no. 6, 2022, Art. no. 1000. https://doi.org/10.3390/math10061000
- K. Hu, C. Weng, Y. Zhang, J. Jin, and Q. Xia, “An overview of underwater vision enhancement: From traditional methods to recent deep learning,” J. Mar. Sci. Eng., vol. 10, no. 2, Feb. 2022, Art. no. 241. https://doi.org/10.3390/jmse10020241
- K. Hu, M. Li, M. Xia, and H. Lin, “Multi-scale feature aggregation network for water area segmentation,” Remote Sensing, vol. 14, no. 1, Jan. 2022, Art. no. 206. https://doi.org/10.3390/rs14010206
- H. M. S. Bruno and E. L. Colombini, “LIFT-SLAM: A deep-learning feature-based monocular visual SLAM method,” Neurocomputing, vol. 455, pp. 97–110, Sep. 2021. https://doi.org/10.1016/j.neucom.2021.05.027
- Y. Cao, Y. Luo, and T. Wang, “ORB-SLAM implementation using deep learning methods for visual odometry.” [Online]. Available: https://ty-wang.github.io/data/slam_report.pdf
- X. Gao and T. Zhang, “Unsupervised learning to detect loops using deep neural networks for visual SLAM system,” Auton. Robots, vol. 41, no. 1, pp. 1–18, Dec. 2017. https://doi.org/10.1007/s10514-015-9516-2
- J. Oh and G. Eoh, “Variational Bayesian approach to condition-invariant feature extraction for visual place recognition,” Applied Sciences, vol. 11, no. 19, Sep. 2021, Art. no. 8976. https://doi.org/10.3390/app11198976
- R. Mur-Artal and J. D. Tardos, “ORB-SLAM2 : an open-source SLAM system for monocular, stereo and RGB-D cameras,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1255–1262, Oct. 2017. https://doi.org/10.1109/TRO.2017.2705103
- C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37, no. 6, pp. 1874–1890, May 2021. https://doi.org/10.1109/TRO.2021.3075644
- A. Steenbeek and F. Nex, “CNN-based dense monocular visual SLAM for real-time UAV exploration in emergency conditions,” Drones, vol. 6, no. 3, Mar. 2022, Art. no. 79. https://doi.org/10.3390/drones6030079
- K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 6565–6574. https://doi.org/10.1109/CVPR.2017.695
- M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison, “CodeSLAM – Learning a compact, optimisable representation for dense visual SLAM,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 2560–2568. https://doi.org/10.1109/CVPR.2018.00271
- N. Yang, R. Wang, J. Stückler, and D. Cremers, “Deep virtual stereo odometry: Leveraging deep depth prediction for monocular direct sparse odometry,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11212. Springer, Cham, 2018, pp. 835–852. https://doi.org/10.1007/978-3-030-01237-3_50
- D. Bojanic, K. Bartol, T. Pribanic, T. Petkovic, Y. D. Donoso, and J. S. Mas, “On the comparison of classic and deep keypoint detector and descriptor methods,” in Int. Symp. Image Signal Process. Anal. ISPA, vol. 2019, Dubrovnik, Croatia, Sep. 2019, pp. 64–69. https://doi.org/10.1109/ISPA.2019.8868792
- S. Dara and P. Tumma, “Feature extraction by using Deep Learning: A survey,” in Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, Coimbatore, India, Mar. 2018, pp. 1795–1801. https://doi.org/10.1109/ICECA.2018.8474912
- C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO : Semi-direct visual odometry for monocular and multi-camera systems,” in 2014 IEEE Int. Conf. Robot. Autom., 2014, pp. 1–18. [Online]. Available: https://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
- J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” 2016. [Online]. Available: https://jakobengel.github.io/pdf/DSO.pdf
- D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, Kerkyra, Greece, Sep. 1999, pp. 1150–1157. https://doi.org/10.1109/ICCV.1999.790410
- H. Bay, T. Tuytelaars, and L. Van Gool, “LNCS 3951 – SURF: Speeded up robust features,” in Computer Vision – ECCV 2006. Lecture Notes in Computer Science, A. Leonardis, H. Bischof, and A. Pinz, Eds., vol 3951. Springer, Berlin, Heidelberg., 2006, pp. 404–417. https://doi.org/10.1007/11744023_32
- M. Calonder, V. Lepetit, M. Özuysal, T. Trzcinski, C. Strecha, and P. Fua, “BRIEF: Computing a local binary descriptor very fast,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1281–1298, 2012. https://doi.org/10.1109/TPAMI.2011.222
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput. Vis., Barcelona, Spain, Nov. 2011, pp. 2564–2571. https://doi.org/10.1109/ICCV.2011.6126544
- D. Detone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-supervised interest point detection and description,” in IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., Salt Lake City, UT, USA, Jun. 2018, pp. 337–349. https://doi.org/10.1109/CVPRW.2018.00060
- K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned invariant feature transform,” in Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., vol. 9910 LNCS. Springer, Cham, 2016, pp. 467–483. https://doi.org/10.1007/978-3-319-46466-4_28
- C. B. Choy, J. Y. Gwak, S. Savarese, and M. Chandraker, “Universal correspondence network,” Adv. Neural Inf. Process. Syst., pp. 2414–2422, Jun. 2016.
- E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, “Discriminative learning of deep convolutional feature point descriptors,” in 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 118–126. https://doi.org/10.1109/ICCV.2015.22
- C. Deng, K. Qiu, R. Xiong, and C. Zhou, “Comparative study of Deep Learning based features in SLAM,” in 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Nagoya, Japan, Jul. 2019, pp. 250–254. https://doi.org/10.1109/ACIRS.2019.8935995
- X. Han, Y. Tao, Z. Li, R. Cen, and F. Xue, “SuperPointVO: A lightweight visual odometry based on CNN feature extraction,” in 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, Sep. 2020, pp. 685–691. https://doi.org/10.1109/CACRE50138.2020.9230348
- D. DeTone, T. Malisiewicz, and A. Rabinovich, “Self-improving visual odometry,” CoRR, vol.abs/1812.03245, 2018. [Online]. Available: http://arxiv.org/abs/1812.03245
- N. Yang, L. Von Stumberg, R. Wang, and D. Cremers, “D3VO: Deep depth, deep pose and deep uncertainty for monocular visual odometry,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 2020, pp. 1278–1289. https://doi.org/10.1109/CVPR42600.2020.00136
- H. Zhan, C. S. Weerasekera, J. W. Bian, and I. Reid, “Visual odometry revisited: What should be learnt?,” in Proc. – IEEE Int. Conf. Robot. Autom., Paris, France, May 2020, pp. 4203–4210. https://doi.org/10.1109/ICRA40945.2020.9197374
- A. Ranjan et al., “Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Long Beach, CA, USA, Jun. 2019, pp. 12232–12241. https://doi.org/10.1109/CVPR.2019.01252
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Dec. 2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
- K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd Int. Conf. Learn. Represent. ICLR 2015 – Conf. Track Proc., 2015, pp. 1–14. https://doi.org/10.48550/arXiv.1409.1556
- J. Hu, M. Ozay, Y. Zhang, and T. Okatani, “Revisiting single image depth estimation: Toward higher resolution maps with accurate object boundaries,” Proc. – 2019 IEEE Winter Conf. Appl. Comput. Vision, WACV 2019, Waikoloa, HI, USA, Jan. 2019, pp. 1043–1051. https://doi.org/10.1109/WACV.2019.00116
- I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth prediction with fully convolutional residual networks,” in Proc. – 2016 4th Int. Conf. 3D Vision, 3DV 2016, Stanford, CA, USA, Oct. 2016, pp. 239–248. https://doi.org/10.1109/3DV.2016.32
- F. Mal and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth samples and a single image,” in Proc. – IEEE Int. Conf. Robot. Autom., Brisbane, QLD, Australia, May 2018, pp. 4796–4803. https://doi.org/10.1109/ICRA.2018.8460184
- Y. Y. Jau, R. Zhu, H. Su, and M. Chandraker, “Deep keypoint-based camera pose estimation with geometric constraints,” in IEEE Int. Conf. Intell. Robot. Syst., Las Vegas, NV, USA, Oct. 2020, pp. 4950–4957. https://doi.org/10.1109/IROS45743.2020.9341229
- T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Computer Vision – ECCV 2014. Lecture Notes in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol 8693. Springer, Cham., 2014, pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
- P. K. N. Silberman, D. Hoiem and R. Fergus, “Indoor segmentation and support inference from RGBD images,” in Computer Vision – ECCV 2012. Lecture Notes in Computer Science, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds., vol 7576. Springer, Berlin, Heidelberg, 2012, pp. 746–760. https://doi.org/10.1007/978-3-642-33715-4_54
- A. Dancu, M. Fourgeaud, Z. Franjcic, and R. Avetisyan, “Underwater reconstruction using depth sensors,” in SA’14, SIGGRAPH Asia 2014 Tech. Briefs, Nov. 2014, Art. no. 2, pp. 1–4. https://doi.org/10.1145/2669024.2669042
- S. T. Digumarti, G. Chaurasia, A. Taneja, R. Siegwart, A. Thomas, and P. Beardsley, “Underwater 3D capture using a low-cost commercial depth camera,” in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 2016, pp. 1–9. https://doi.org/10.1109/WACV.2016.7477644
- N. Wang, Y. Zhou, F. Han, H. Zhu, and Y. Zheng, “UWGAN: Underwater GAN for real-world underwater color restoration and dehazing,” arXiv 2019, arXiv:1912.10269, pp. 1–10, 2019. https://arxiv.org/ftp/arxiv/papers/1912/1912.10269.pdf
- M. J. Islam, Y. Xia, and J. Sattar, “Fast underwater image enhancement for improved visual perception,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3227–3234, Feb. 2020. https://doi.org/10.1109/LRA.2020.2974710
- C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery using generative adversarial networks,” in Proc. - IEEE Int. Conf. Robot. Autom., Brisbane, QLD, Australia, May 2018, pp. 7159–7165. https://doi.org/10.1109/ICRA.2018.8460552
- M. Trajković and M. Hedley, “Fast corner detection,” Image Vis. Comput., vol. 16, no. 2, pp. 75–87, Feb. 1998. https://doi.org/10.1016/S0262-8856(97)00056-5
- V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “HPatches: A benchmark and evaluation of handcrafted and learned local descriptors,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 3852–3861. https://doi.org/10.1109/CVPR.2017.410
- A. Duarte, F. Codevilla, J. D. O. Gaya, and S. S. C. Botelho, “A dataset to evaluate underwater image restoration methods,” in OCEANS 2016 – Shanghai, Shanghai, China, Apr. 2016, pp. 1–6. https://doi.org/10.1109/OCEANSAP.2016.7485524
- C. Li et al., “An underwater image enhancement benchmark dataset and beyond,” IEEE Trans. Image Process., vol. 29, pp. 4376–4389, Nov. 2020. https://doi.org/10.1109/TIP.2019.2955241
- M. Ferrera, V. Creuze, J. Moras, and P. Trouvé-Peloux, “AQUALOC: An underwater dataset for visual-inertial-pressure localization,” Int. J. Rob. Res., vol. 38, no. 14, pp. 1549–1559, Oct. 2019. https://doi.org/10.1177/0278364919883346
- J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, Oct. 2012, pp. 573–580. https://doi.org/10.1109/IROS.2012.6385773