References
- [1] W. Qi-wu, Q. Liu, and W. Wen, “Comparative study of VANET routing protocols,” International Conference on Cyberspace Technology (CCT 2014), Beijing, China, Nov. 2014. https://doi.org/10.1049/cp.2014.1306
- [2] K. T. Mahima, M. Ayoob, and G. Poravi, “Adversarial attacks and defense technologies on Autonomous Vehicles: A Review,” Applied Computer Systems, vol. 26, no. 2, pp. 96–106, Dec. 2021. https://doi.org/10.2478/acss-2021-0012
- [3] N.V. Dharani Kumari and B.S. Shylaja, “AMGRP: AHP-based multimetric geographical routing protocol for urban environment of VANETs,” Journal of King Saud University – Computer and Information Sciences, vol. 31, no. 1, pp. 72–81, Jan. 2019. https://doi.org/10.1016/j.jksuci.2017.01.001
- [4] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid – system architecture and implementation,” IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 157–171, Mar. 2018. https://doi.org/10.1109/TTE.2017.2779268
- [5] C. N. Van Phu, N. Farhi, H. Haj-Salem, and J.-P. Lebacque, “A vehicle-to-infrastructure communication based algorithm for urban traffic control,” in 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 2017, pp. 651–656. https://doi.org/10.1109/MTITS.2017.8005594
- [6] I. Wahid, A. A. Ikram, M. Ahmad, S. Ali, and A. Ali, “State of the art routing protocols in VANETs: A review,” Procedia Computer Science, vol. 130, pp. 689–694, 2018. https://doi.org/10.1016/j.procs.2018.04.121
- [7] M. R. Ghori, K. Z. Zamli, N. Quosthoni, M. Hisyam, and M. Montaser, “Vehicular ad-hoc network (VANET): Review,” in 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, May 2018, pp. 1–6. https://doi.org/10.1109/ICIRD.2018.8376311
- [8] R. A. Nazib and S. Moh, “Routing protocols for unmanned aerial vehicle-aided vehicular ad hoc networks: A survey,” IEEE Access, vol. 8, pp. 77535–77560, Apr. 2020. https://doi.org/10.1109/ACCESS.2020.2989790
- [9] S. Boussoufa-Lahlah, F. Semchedine, and L. Bouallouche-Medjkoune, “Geographic routing protocols for vehicular ad hoc networks (VANETs): A survey,” Vehicular Communications, vol. 11, pp. 20–31, Jan. 2018. https://doi.org/10.1016/j.vehcom.2018.01.006
- [10] S. K. Bhoi and P. M. Khilar, “Vehicular communication: A survey,” IET Networks, vol. 3, no. 3, pp. 204–217, Sep. 2014. https://doi.org/10.1049/iet-net.2013.0065
- [11] A. K. Basil, M. Ismail, M. A. Altahrawi, H. Mahdi, and N. Ramli, “Performance of AODV and OLSR routing protocols in VANET under various traffic scenarios,” in 2017 IEEE 13th Malaysia International Conference on Communications (MICC), Johor Bahru, Malaysia, Nov. 2017, pp. 107–112. https://doi.org/10.1109/MICC.2017.8311742
- [12] D. S. Sandhu and S. Sharma, “Performance evaluation of DSDV, DSR, OLSR, TORA routing protocols – A review,” in Mobile Communication and Power Engineering, vol 296, V.V. Das and Y. Chaba, Eds. Springer, Berlin, Heidelberg, 2013, pp. 502–507. https://doi.org/10.1007/978-3-642-35864-7_77
- [13] J. M. Garcia-Campos, D. G. Reina, S. L. Toral, N. Bessis, F. Barrero, E. Asimakopoulou, and R. Hill, “Performance evaluation of reactive routing protocols for VANETs in urban scenarios following good simulation practices,” in 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Santa Catarina, Brazil, Jun. 2015, pp. 1–8. https://doi.org/10.1109/IMIS.2015.5
- [14] S. Liu, Y. Yang, and W. Wang, “Research of AODV routing protocol for ad hoc networks1,” AASRI Procedia, vol. 5, pp. 21–31, 2013. https://doi.org/10.1016/j.aasri.2013.10.054
- [15] L. Zhu, C. Li, B. Xia, Y. He, and Q. Lin, “A hybrid routing protocol for 3-D vehicular ad hoc networks,” IEEE Systems Journal, vol. 11, no. 3, pp. 1239–1248, Nov. 2017. https://doi.org/10.1109/JSYST.2015.2490341
- [16] S. Goumiri, M. A. Riahla, and M. Hamadouche, “Security issues in self-organized ad-hoc networks (Manet, VANET, and FANET): A survey,” in Artificial Intelligence and Its Applications, AIAP 2021. Lecture Notes in Networks and Systems, vol 413, B. Lejdel, E. Clementini, and L. Alarabi, Eds. Springer, Cham, 2022, pp. 312–324. https://doi.org/10.1007/978-3-030-96311-8_29
- [17] A. Rasheed, S. Gillani, S. Ajmal, and A. Qayyum, “Vehicular Ad Hoc network (VANET): A survey, challenges, and applications,” in Vehicular Ad Hoc Network (VANET): A Survey, Challenges, and Applications, vol. 548, A. Laouiti, A. Qayyum, M. Mohamad Saad, Eds. Springer, Singapore, 2017, pp. 39–51. https://doi.org/10.1007/978-981-10-3503-6_4
- [18] S. Khatri, H. Vachhani, S. Shah, J. Bhatia, M. Chaturvedi, S. Tanwar, and N. Kumar, “Machine learning models and techniques for VANET based traffic management: Implementation issues and challenges,” Peer-to-Peer Networking and Applications, vol. 14, pp. 1778–1805, May 2021. https://doi.org/10.1007/s12083-020-00993-4
- [19] K. Adhvaryu, “Performance comparison of multicast routing protocols based on Route Discovery Process for Manet,” in Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, vol 89, G. Ranganathan, J. Chen, and Á. Rocha, Eds. Springer, Singapore, 2020, pp. 79–85. https://doi.org/10.1007/978-981-15-0146-3_9
- [20] E. E. Akkari Sallum, G. dos Santos, M. Alves, and M. M. Santos, “Performance analysis and comparison of the DSDV, AODV and OLSR routing protocols under VANETs,” in 2018 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST), Lisboa, Portugal, Oct. 2018, pp. 1–7. https://doi.org/10.1109/ITST.2018.8566825
- [21] M. Kaur and B. S. Sohi, “Efficient DAG task scheduling algorithm for Wireless Sensor Networks,” International Journal of Computer Sciences and Engineering, vol. 6, no. 12, pp. 735–743, Dec. 2018. https://doi.org/10.26438/ijcse/v6i12.735743
- [22] J. Toutouh, J. Garcia-Nieto, and E. Alba, “Intelligent OLSR routing protocol optimization for VANETs,” IEEE Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1884–1894, Mar. 2012. https://doi.org/10.1109/TVT.2012.2188552
- [23] G. F. Ahmed, R. Barskar, and N. Barskar, “An improved DSDV routing protocol for wireless ad hoc networks,” Procedia Technology, vol. 6, pp. 822–831, 2012. https://doi.org/10.1016/j.protcy.2012.10.100
- [24] C. O. Asogwa, X. Zhang, D. Xiao, and A. Hamed, “Experimental Analysis of AODV, DSR and DSDV protocols based on Wireless Body Area Network,” in Internet of Things, Communications in Computer and Information Science, vol 312, Y. Wang and X. Zhang, Eds. Springer, Berlin, Heidelberg, 2012, pp. 183–191. https://doi.org/10.1007/978-3-642-32427-7_25
- [25] E. Amiri and R. Hooshmand, “Retracted article: Improved AODV based on Topsis and fuzzy algorithms in vehicular ad-hoc networks,” Wireless Personal Communications, vol. 111, no. 2, pp. 947–961, Nov. 2019. https://doi.org/10.1007/s11277-019-06894-x
- [26] H. Brahmia and C. Tolba, “Vanet routing protocols: Discussion of various ad-hoc on-demand distance vector (AODV) improvements,” in 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, Oct. 2018, pp. 1–6. https://doi.org/10.1109/PAIS.2018.8598502
- [27] O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani, and H. Alsariera, “A comprehensive survey: Benefits, services, recent works, challenges, security, and use cases for SDN-VANET,” IEEE Access, vol. 8, pp. 91028–91047, May 2020. https://doi.org/10.1109/ACCESS.2020.2992580
- [28] H. D. Ali and A. H. Abdulqader, “Using software defined network (SDN) controllers to enhance communication between two vehicles in vehicular ad hoc network (VANET),” in 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq, Aug. 2021, pp. 106–111. https://doi.org/10.1109/ICCITM53167.2021.9677720
- [29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, Apr. 2008. https://doi.org/10.1145/1355734.1355746
- [30] Z. He, J. Cao, and X. Liu, “SDVN: Enabling rapid network innovation for heterogeneous vehicular communication,” IEEE Network, vol. 30, no. 4, pp. 10–15, Jul. 2016. https://doi.org/10.1109/MNET.2016.7513858
- [31] W.Ben Jaballah, M.Conti, and C.Lal, “A survey on software-defined VANETs: benefits, challenges, and future directions,” arXiv preprint, arXiv:1904.04577, 2019. https://doi.org/10.48550/arXiv.1904.04577
- [32] Md. Mahmudul Islam, M. T. R. Khan, M. M. Saad, and D. Kim, “Software-defined vehicular network (SDVN): A survey on architecture and routing,” Journal of Systems Architecture, vol. 114, Mar. 2021, Art no. 101961. https://doi.org/10.1016/j.sysarc.2020.101961
- [33] The Network Simulator ns-3. [Online]. Available: https://www.nsnam.org/. Accessed on: Oct. 26, 2022.
- [34] SourceForge, “Eclipse SUMO – simulation of Urban mobility”. [Online]. Available: http://sumo.sourceforge.net/. Accessed on: Oct. 26, 2022.