Have a personal or library account? Click to login
On local aromaticity of selected model aza-[n]circulenes (n = 6, 7, 8 and 9): Density functional theoretical study Cover

On local aromaticity of selected model aza-[n]circulenes (n = 6, 7, 8 and 9): Density functional theoretical study

Open Access
|Jul 2019

References

  1. Bag S, Maiti PK (2017) Phys. Rev. B 96(24): 245401. Doi: https://doi.org/10.1103/PhysRevB.96.245401.10.1103/PhysRevB.96.245401
  2. Barth WE, Lawton RG (1966) J. Am. Chem. Soc. 88:380. Doi: https://doi.org/10.1021/ja00954a049.10.1021/ja00954a049
  3. Becke AD (1988) Phys Rev A 38: 3098—3100. Doi: https://doi.org/10.1103/PhysRevA.38.3098.10.1103/PhysRevA.38.3098
  4. Bharat, Bhola, R, Bally T, Valente A, Cyrański MK, Dobrzycki Ł, Spain SM, Rempała P, Chin MR, King BT (2010) Angew. Chem. Int. Ed. 49: 399. Doi: https://doi.org/10.1002/anie.200905633.10.1002/anie.20090563319957259
  5. Boys SF, Bernardi F (1970) Mol Phys 19: 553—566. Doi: https://doi.org/10.1080/00268977000101561.10.1080/00268977000101561
  6. Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004)
  7. Chem Rev 104: 4971—5003. Doi: https://doi.org/10.1021/cr040084k.10.1021/cr040084k15535639
  8. Chai W, Jin R (2016) J. Mol. Struct. 1103: 177—182. Doi: https://doi.org/10.1016/j.molstruc.2015.09.023.10.1016/j.molstruc.2015.09.023
  9. Chang YC, Kuo MY, Chen CP, Lu HF, Chao I (2010) J. Phys. Chem. C. 114: 11595—11601. Doi: https://doi.org/10.1021/jp1025625.10.1021/jp1025625
  10. Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES and Nenajdenko G (2006) Angew. Chem. 45(44): 7367—7370. Doi: https://doi.org/10.1002/anie.200602190.10.1002/anie.20060219017001717
  11. Christoph H, Grunenberg J, Hopf H, Dix I, Jones PG, Scholtissek M, Maier G (2008) Chem. Eur. J. 14: 5604. Doi: https://doi.org/10.1002/chem.200701837.10.1002/chem.20070183718478614
  12. Cornil J, Lemaur V, Calbert JP, Brédas JL (2002) Adv Mater 14: 726. Doi: https://doi.org/10.1002/1521-4095(200107)13:14<1053::AIDADMA1053>3.0.CO;2-7.10.1002/1521-4095(20020517)14:10<;726::AID-ADMA726>3.0.CO;2-D
  13. Da Silva Filho DA, Kim EG, Brédas JL (2005) Adv. Mater. 17: 1072—1076. Doi: https://doi.org/10.1002/adma.200401866.10.1002/adma.200401866
  14. Dadvand A, Cicoira F, Chernichenko YK, Balenkova ES, Osuna RM, Rosei F, Nenajdenko VG, Perepichka DF (2008) Chem. Commun. 42: 5354—5356. Doi: https://doi.org/10.1039/B809259A.10.1039/b809259a
  15. Datta A, Pati SK (2007) J. Phys. Chem. C 19: 4487—4490. Doi: https://doi.org/10.1021/jp070609n.10.1021/jp070609n
  16. Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem. Phys. Lett., 240: 283—289. Doi: https://doi.org/10.1016/0009-2614(95)00621-A.10.1016/0009-2614(95)00621-A
  17. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor. Chem. Acc. 97: 119—124. Doi: https://doi.org/10.1007/s002140050244.10.1007/s002140050244
  18. Feng CN, Kuo MY, Wu YT (2013) Angew. Chem. Int. Ed. 52: 7791. Doi: https://doi.org/10.1002/anie.201303875.10.1002/anie.20130387523794166
  19. Flukiger P, Luthi HP, Sortmann S, Weber J (2002) Molekel 4.3, Swiss National Supercomputing Centre, Manno, Switzerland.
  20. Friederich P, Meded V, Poschlad A, Neumann T, Rodin V, Stehr V, Symalla F, Danilov D, Lüdemann G, Fink RF, Kondov I, von Wrochem F, Wenzel W (2016) Adv. Funct. Mater. 26: 5757—5763. Doi: https://doi.org/10.1002/adfm.201601807.10.1002/adfm.201601807
  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian Inc. Wallingford CT, Gaussian 09 Revis. C.01. (2010) Gaussian Inc., Wallingford CT. Doi: https://doi.org/10.1017/CBO9781107415324.004.10.1017/CBO9781107415324.004
  22. Frizzo CP, Martins MAP (2012) Struct Chem 23: 375—380. Doi: https://doi.org/10.1007/s11224-011-9883-z.10.1007/s11224-011-9883-z
  23. Gahungu G, Zhang J, Barancira T (2009) J. Phys. Chem. A 113: 255—262. Doi: https://doi.org/10.1021/jp804986b.10.1021/jp804986b19072112
  24. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15): 154104. Doi: https://doi.org/10.1063/1.3382344.10.1063/1.3382344
  25. Hensel T, Andersen NN, Plesner M, Pittelkow M (2016) Synlett. 27(04): 498—525. Doi: https://doi.org/10.1055/s-0035-1560524.10.1055/s-0035-1560524
  26. Hohenberg P, Kohn W (1964) Phys. Rev. 136: B864—B871. Doi: https://doi.org/10.1103/PhysRev.136.B864.10.1103/PhysRev.136.B864
  27. Huong VTT, Tai TB, Nguyen MT (2012) Phys. Chem. Chem. Phys. 14: 14832—14841. Doi: https://doi.org/10.1039/C2CP42474F.10.1039/c2cp42474f
  28. Huong VTT, Tai TB, Nguyen MT (2015) RSC Adv. 5: 24167—24174. Doi: https://doi.org/10.1039/C4RA16485G.10.1039/C4RA16485G
  29. Larsson S, Klimkans A, Rodriguez-Monge L, Duskesas G (1998) Theochem-Journal Mol. Struct. 425: 155—159. Doi: https://doi.org/10.1016/S0166-1280(97)00216-9.10.1016/S0166-1280(97)00216-9
  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785—789. Doi: https://doi.org/10.1103/PhysRevB.37.785.10.1103/PhysRevB.37.7859944570
  31. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) IEEE Electron Device Lett. 18: 606—608. Doi: https://doi.org/10.1109/55.644085.10.1109/55.644085
  32. Liu CC, Mao SW, Kuo MY (2010) J. Phys. Chem. C. 114: 22316—22321. Doi: https://doi.org/10.1021/jp1099464.10.1021/jp1099464
  33. Lukeš V, Cagardová D, Michalík M, Poliak P (2018) Synt. Met. 240: 67—76. Doi: https://doi.org/10.1016/j.synthmet.2018.03.014.10.1016/j.synthmet.2018.03.014
  34. Maier SA, Ankerhold J (2010) Phys. Rev. E 81: 021107. doi: https://doi.org/10.1103/PhysRevE.81.021107.10.1103/PhysRevE.81.021107
  35. Malagoli M, Brédas JL (2000) Chem Phys Lett 327: 13—17. Doi: https://doi.org/10.1016/S0009-2614(00)00757-0.10.1016/S0009-2614(00)00757-0
  36. Malagoli M, Coropceanu V, Da Silva Filho DA, Brédas JL (2004) J. Chem. Phys. 120: 7490—7496. Doi: https://doi.org/10.1063/1.1687675.10.1063/1.168767515267661
  37. Marcus RA (1993) Rev Mod Phys 65: 599—610. Doi: https://doi.org/10.1103/RevModPhys.65.599.10.1103/RevModPhys.65.599
  38. Mohakud S, Pati SK (2009) J. Mater. Chem.19: 4356—4361. Doi: https://doi.org/10.1039/B901014A.10.1039/b901014a
  39. Murphy AR, Fréchet JMJ (2007) Chem. Rev. 107: 1066—1096. Doi: https://doi.org/10.1021/cr0501386.10.1021/cr050138617428023
  40. Nagata Y, Kato S, Miyake Y, Shinokubo H (2017) Org. Lett. 19: 2718—2721. Doi: https://doi.org/10.1021/acs.orglett.7b01074.10.1021/acs.orglett.7b0107428489399
  41. Nan G, Shi Q, Shuai Z, Li Z (2011) Phys. Chem. Chem. Phys. 13: 9736—9746. Doi: https://doi.org/10.1039/C1CP00001B.10.1039/c1cp00001b21503350
  42. Ośmiałowski B, Raczyńska ED, Krygowski TM (2006) J Org Chem 71(10): 3727—3736. Doi: https://doi.org/10.1021/jo052615q.10.1021/jo052615q16674042
  43. Runge E, Gross EKU (1984) Phys. Rev. Lett. 52: 997—1000. doi: https://doi.org/10.1103/PhysRevLett.52.997.10.1103/PhysRevLett.52.997
  44. Sakamoto Y, Suzuki T (2013) J. Am. Chem. Soc. 135(38): 14074—14077. Doi: https://doi.org/10.1021/ja407842z.10.1021/ja407842z24015972
  45. Sakanoue K, Motoda M, Sugimoto M, Sakaki S (1999) J Phys Chem A 103: 5551—5556. Doi: https://doi.org/10.1021/jp990206q.10.1021/jp990206q
  46. Scholl R; Meyer K (1932) Ber. Dtsch. Chem. Ges. 65: 902. Doi: https://doi.org/10.1002/cber.19370701104. Sigma Aldrich (2019) website: https://www.sigmaaldrich.com/.10.1002/cber.19320650603
  47. Simon S, Duran M, Dannenberg JJ (1996) J. Chem. Phys. 105: 11024—11031. Doi: https://doi.org/10.1063/1.472902.10.1063/1.472902
  48. Wang L, Li P, Xu B, Zhang H, Tian W (2014) Org. Electron. 15: 2476—2485. Doi: https://doi.org/10.1016/j.orgel.2014.07.003.10.1016/j.orgel.2014.07.003
  49. Xantheas SS (1996) J. Chem. Phys. 104: 8821—8824. Doi: https://doi.org/10.1063/1.471605.10.1063/1.471605
  50. Xiong X, Deng CL, Li Z, Peng XS, Wong HNC (2017) Org. Chem. Front. 4(5): 682—687. Doi: https://doi.org/10.1039/C6QO00662K.10.1039/C6QO00662K
  51. Yakuphanoglu F, Mansouri S, Bourguiga R (2012) Synt. Met. 162: 918—923. Doi: https://doi.org/10.1016/j.synthmet.2012.04.003.10.1016/j.synthmet.2012.04.003
  52. Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N (1983) J. Am. Chem. Soc. 105: 7171. Doi: https://doi.org/10.1021/ja00362a025.10.1021/ja00362a025
  53. Zheng J, Xu X, Truhlar DG (2011) Theor Chem Acc 128: 295. Doi: https://doi.org/10.1007/s00214-010-0846-z.10.1007/s00214-010-0846-z
DOI: https://doi.org/10.2478/acs-2019-0011 | Journal eISSN: 1339-3065 | Journal ISSN: 1337-978X
Language: English
Page range: 70 - 81
Published on: Jul 9, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2019 Denisa Cagardová, Vladimír Lukeš, Ján Matúška, Peter Poliak, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.