Have a personal or library account? Click to login
Pan-Cdk inhibitor ZK304709 suppresses Cdc20 expression and potentiates the anticancer activity of apcin in HeLa cervical cancer cells Cover

Pan-Cdk inhibitor ZK304709 suppresses Cdc20 expression and potentiates the anticancer activity of apcin in HeLa cervical cancer cells

Open Access
|Dec 2025

References

  1. S. Kim and H. Yu, Mutual regulation between the spindle checkpoint and APC/C, Semin. Cell Dev. Biol. 22(6) (2011) 551–558; https://doi.org/10.1016/j.semcdb.2011.03.008
  2. Z. Wang, L. Wan, J. Zhong, H. Inuzuka, P. Liu, F. H. Sarkar and W. Wei, Cdc20: A potential novel therapeutic target for cancer treatment, Curr. Pharm. Des. 19(18) (2013) 3210–3214; https://doi.org/10.2174/1381612811319180005
  3. S. M. Jeong, Q. T. Bui, M. Kwak, J. Y. Lee and P. C. Lee, Targeting Cdc20 for cancer therapy, Biochim. Biophys. Acta Rev. Cancer 1877(6) (2022) Article ID 188824 (8 pages); https://doi.org/10.1016/j.bbcan.2022.188824
  4. F. Wu, Y. Sun, J. Chen, H. Li, K. Yao, Y. Liu, Q. Liu and J. Lu, The oncogenic role of APC/C activator protein Cdc20 by an integrated pan-cancer analysis in human tumors, Front. Oncol. 11 (2021) Article ID 721797 (16 pages); https://doi.org/10.3389/fonc.2021.721797
  5. S. Bruno, A. Ghelli Luserna di Rora, R. Napolitano, S. Soverini, G. Martinelli and G. Simonetti, CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies, J. Exp. Clin. Cancer Res. 41(1) (2022) Article ID 159 (16 pages); https://doi.org/10.1186/s13046-022-02363-9
  6. M. Schapira, M. F. Calabrese, A. N. Bullock and C. M. Crews, Targeted protein degradation: Expanding the toolbox, Nat. Rev. Drug Discov. 18(12) (2019) 949–963; https://doi.org/10.1038/s41573-019-0047-y
  7. L. Wang, J. Zhang, L. Wan, X. Zhou, Z. Wang and W. Wei, Targeting Cdc20 as a novel cancer therapeutic strategy, Pharmacol. Ther. 151 (2015) 141–151; https://doi.org/10.1016/j.pharmthera.2015.04.002
  8. K. L. Sackton, N. Dimova, X. Zeng, W. Tian, M. Zhang, T. B. Sackton, J. Meaders, K. L. Pfaff, F. Sigoillot, H. Yu, X. Luo and R. W. King, Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C, Nature 514(7524) (2014) 646–649; https://doi.org/10.1038/nature13660
  9. P. Huang, X. Le, F. Huang, J. Yang, H. Yang, J. Ma, G. Hu, Q. Li and Z. Chen, Discovery of a dual tubulin polymerization and cell division cycle 20 homologue inhibitor via structural modification on apcin, J. Med. Chem. 63(9) (2020) 4685–4700; https://doi.org/10.1021/acs.jmedchem.9b02097
  10. S. F. Zhao, J. F. Leng, S. S. Xie, L. Q. Zhu, M. Y. Zhang, L. Y. Kong and Y. Yin, Design, synthesis and biological evaluation of CDC20 inhibitors for treatment of triple-negative breast cancer, Eur. J. Med. Chem. 268 (2024) Article ID 116204 (18 pages); https://doi.org/10.1016/j.ejmech.2024.116204
  11. X. Le, Q. Chen, Q. Wen, S. Cao, L. Zhang, L. Hu, G. Hu, Q. Li and Z. Chen, Design, synthesis and optimization of apcin analogues as Cdc20 inhibitors for triple-negative breast cancer therapy, Eur. J. Med. Chem. 289 (2025) Article ID 117434 (20 pages); https://doi.org/10.1016/j.ejmech.2025.117434
  12. Y. He, X. Le, G. Hu, Q. Li and Z. Chen, Discovery of ureido-based apcin analogues as Cdc20-specific inhibitors against cancer, Pharmaceuticals (Basel) 16(2) (2023) Article ID 304 (21 pages); https://doi.org/10.3390/ph16020304
  13. J. J. Chi, H. Li, Z. Zhou, J. Izquierdo-Ferrer, Y. Xue, C. M. Wavelet, G. E. Schiltz, B. Zhang, M. Cristofanilli, X. Lu, I. Bahar and Y. Wan, A novel strategy to block mitotic progression for targeted therapy, EBioMedicine 49 (2019) 40–54; https://doi.org/10.1016/j.ebiom.2019.10.013
  14. J. L. Schneider, J. J. Lin and A. T. Shaw, ALK-positive lung cancer: A moving target, Nat. Cancer 4(3) (2023) 330–343; https://doi.org/10.1038/s43018-023-00515-0
  15. J. He, Z. Huang, L. Han, Y. Gong and C. Xie, Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer, Int. J. Oncol. 59(5) (2021) Article ID 90 (20 pages); https://doi.org/10.3892/ijo.2021.5270
  16. S. Kalra, G. Joshi, A. Munshi and R. Kumar, Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors, Eur. J. Med. Chem. 142 (2017) 424–458; https://doi.org/10.1016/j.ejmech.2017.08.071
  17. J. M. Eichhorn, N. Sakurikar, S. E. Alford, R. Chu and T. C. Chambers, Critical role of anti-apoptotic Bcl-2 protein phosphorylation in mitotic death, Cell Death Dis. 4(10) (2013) Article ID e834 (8 pages); https://doi.org/10.1038/cddis.2013.360
  18. Z. Xie, S. Hou, X. Yang, Y. Duan, J. Han, Q. Wang and C. Liao, Lessons learned from past cyclin--dependent kinase drug discovery efforts, J. Med. Chem. 65(9) (2022) 6356–6389; https://doi.org/10.1021/acs.jmedchem.1c02190
  19. K. D. Freeman-Cook, R. L. Hoffman, D. C. Behenna, B. Boras, J. Carelli, W. Diehl, R. A. Ferre, Y. A. He, A. Hui, B. Huang, N. Huser, R. Jones, S. E. Kephart, J. Lapek, M. McTigue, N. Miller, B. W. Murray, A. Nagata, L. Nguyen, S. Niessen, S. Ninkovic, I. O’Doherty, M. A. Ornelas, J. Solowiej, S. C. Sutton, K. Tran, E. Tseng, R. Visswanathan, M. Xu, L. Zehnder, Q. Zhang, C. Zhang and S. Dann, Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer, J. Med. Chem. 64(13) (2021) 9056–9077; https://doi.org/10.1021/acs.jmedchem.1c00159
  20. A. Scholz, K. Wagner, M. Welzel, F. Remlinger, B. Wiedenmann, G. Siemeister, S. Rosewicz and K. M. Detjen, The oral multitarget tumour growth inhibitor, ZK 304709, inhibits growth of pancreatic neuroendocrine tumours in an orthotopic mouse model, žš 58(2) (2009) 261–270; https://doi.org/10.1136/gut.2007.146415
  21. J. S. Graham, R. Plummer, C. McCoy, K. Kowal, H. Wiesinger, K. Detjen, H. Calvert, B. Wiedenmann and J. Cassidy, Open-label, non-randomised, inter-individual dose escalation of ZK 304709 with the evaluation of safety, tolerability, pharmacokinetics, oral bioavailability and orientating efficacy after daily administration in patients with advanced cancer (7 d treatment and 14 d recovery), Eur. J. Cancer 44(15) (2008) 2162–2168; https://doi.org/10.1016/j.ejca.2008.06.006
  22. G. Siemeister, U. Luecking, C. Wagner, K. Detjen, C. Mc Coy and K. Bosslet, Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709, Biomed. Pharmacother. 60(6) (2006) 269–272; https://doi.org/10.1016/j.biopha.2006.06.003
  23. E. N. Scott, A. L. Thomas, L. R. Molife, S. Ahmed, S. Blagden, P. C. Fong, K. Kowal, C. McCoy, H. Wiesinger, W. Steward and J. De Bono, A phase I dose escalation study of the pharmacokinetics and tolerability of ZK 304709, an oral multi-targeted growth inhibitor (MTGI), in patients with advanced solid tumours, Cancer Chemother. Pharmacol. 64(2) (2009) 425–429; https://doi.org/10.1007/s00280-009-0968-y
  24. C. Xu, C. Chen, Y. Xu, Z. Li, H. Chen and G. Wang, Prognostic significance of CDK1 in ovarian and cervical cancers, J. Cancer 16(5) (2025) 1656–1667; https://doi.org/10.7150/jca.104371
  25. G. Xu, X. Yan, Z. Hu, L. Zheng, K. Ding, Y. Zhang, Y. Qing, T. Liu, L. Cheng and Z. Shi, Glucocappasalin induces G2/M-phase arrest, apoptosis, and autophagy pathways by targeting CDK1 and PLK1 in cervical carcinoma cells, Front. Pharmacol. 12 (2021) Article ID 671138 (13 pages); https://doi.org/10.3389/fphar.2021.671138
  26. H. Deng, Q. Hang, D. Shen, H. Ying, Y. Zhang, X. Qian and M. Chen, High expression levels of CDK1 and CDC20 in patients with lung squamous cell carcinoma are associated with worse prognosis, Front. Mol. Biosci. 8 (2021) Article ID 653805 (15 pages); https://doi.org/10.3389/fmolb.2021.653805
  27. J. Li, Y. Wang, X. Wang and Q. Yang, CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis, World J. Surg. Oncol. 18(1) (2020) Article ID 50 (11 pages); https://doi.org/10.1186/s12957-020-01817-8
  28. W. X. Yang, Y. Y. Pan and C. G. You, CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 may be potential therapeutic targets for hepatocellular carcinoma using integrated bioinformatic analysis, Biomed. Res. Int. 2019 (2019) Article ID 1245072 (16 pages); https://doi.org/10.1155/2019/1245072
  29. Y. Chen, P. Yang, J. Wang, S. Gao, S. Xiao, W. Zhang, M. Zhu, Y. Wang, X. Ke and H. Jing, p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma, Exp. Hematol. Oncol. 12(1) (2023) Article ID 28 (23 pages); https://doi.org/10.1186/s40164-023-00381-7
  30. T. Kidokoro, C. Tanikawa, Y. Furukawa, T. Katagiri, Y. Nakamura and K. Matsuda, CDC20, a potential cancer therapeutic target, is negatively regulated by p53, Oncogene 27(11) (2008) 1562–1571; https://doi.org/10.1038/sj.onc.1210799
  31. N. E. Huskey, T. Guo, K. J. Evason, O. Momcilovic, D. Pardo, K. J. Creasman, R. L. Judson, R. Blelloch, S. A. Oakes, M. Hebrok and A. Goga, CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively kills embryonic stem cells, and prevents teratoma formation, Stem Cell Reports 4(3) (2015) 374–389; https://doi.org/10.1016/j.stemcr.2015.01.019
  32. M. Lu, H. Breyssens, V. Salter, S. Zhong, Y. Hu, C. Baer, I. Ratnayaka, A. Sullivan, N. R. Brown, J. Endicott, S. Knapp, B. M. Kessler, M. R. Middleton, C. Siebold, E. Y. Jones, E. V. Sviderskaya, J. Cebon, T. John, O. L. Caballero, C. R. Goding and X. Lu, Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP, Cancer Cell 23(5) (2013) 618–633; https://doi.org/10.1016/j.ccr.2013.03.013
DOI: https://doi.org/10.2478/acph-2026-0002 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Accepted on: Oct 5, 2025
Published on: Dec 17, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Xiangyang Le, Qingsong Chen, Shuyang Cao, Gaoyun Hu, Qianbin Li, Zhuo Chen, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT