References
- https://www.who.int/health-topics/tuberculosis#tab=tab_1; last access date May 19, 2025.
- Y. M. Jacobo-Delgado, A. Rodríguez-Carlos, C. J. Serrano and B. Rivas-Santiago, Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible?, Front. Immunol. 14 (2023) Article ID 1194923 (18 pages); https://doi.org/10.3389/fimmu.2023.1194923
- S. S. R. Alsayed and H. Gunosewoyo, Tuberculosis: Pathogenesis, current treatment regimens and new drug targets, IJMS 24(6) (2023) Article ID 5202 (23 pages); https://doi.org/10.3390/ijms24065202
- M. S. Prasad, R. P. Bhole, P. B. Khedekar and R. V. Chikhale, Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery, Bioorg. Chem. 115 (2021) Article ID 105242; https://doi.org/10.1016/j.bioorg.2021.105242
- S. Lale Ngema, N. Dookie, R. Perumal, L. Nandlal, N. Naicker, M. Peter Letsoalo, M. O’Donnell, A. Khan, N. Padayatchi and K. Naidoo, Isoniazid resistance-conferring mutations are associated with highly variable phenotypic resistance, J. Clin. Tuberculosis Other Mycobacterial Dis. 33 (2023) Article ID 100387 (6 pages); https://doi.org/10.1016/j.jctube.2023.100387
- S. K. Wahan, G. Bhargava, V. Chawla and P. A. Chawla, Unlocking InhA: Novel approaches to inhibit Mycobacterium tuberculosis, Bioorg. Chem. 146 (2024) Article ID 107250; https://doi.org/10.1016/j.bioorg.2024.107250
- S. L. Parikh, G. Xiao and P. J. Tonge, Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid, Biochemistry 39(26) (2000) 7645–7650; https://doi.org/10.1021/bi0008940
- M. R. Kuo, H. R. Morbidoni, D. Alland, S. F. Sneddon, B. B. Gourlie, M. M. Staveski, M. Leonard, J. S. Gregory, A. D. Janjigian, C. Yee, J. M. Musser, B. Kreiswirth, H. Iwamoto, R. Perozzo, W. R. Jacobs, J. C. Sacchettini and D. A. Fidock, Targeting tuberculosis and malaria through inhibition of enoyl reductase, J. Biol. Chem. 278(23) (2003) 20851–20859; https://doi.org/10.1074/jbc.M211968200
- T. S. Ibrahim, E. S. Taher, E. Samir, A. M. Malebari, A. N. Khayyat, M. F. A. Mohamed, R. M. Bokhtia, M. A. AlAwadh, I. A. Seliem, H. Z. Asfour, N. A. Alhakamy, S. S. Panda and A. M. M. AL-Mahmoudy, In vitro antimycobacterial activity and physicochemical characterization of diaryl ether triclosan analogues as potential InhA reductase inhibitors, Molecules 25(14) (2020) Article ID 3125 (18 pages); https://doi.org/10.3390/molecules25143125
- T. Armstrong, M. Lamont, A. Lanne, L. J. Alderwick and N. R. Thomas, Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives, Bioorg. Med. Chem. 28 (2020) Article ID 115744; https://doi.org/10.1016/j.bmc.2020.115744
- F. Rodriguez, N. Saffon, J. C. Sammartino, G. Degiacomi, M. R. Pasca and C. Lherbet, First triclosan-based macrocyclic inhibitors of InhA enzyme, Bioorg. Chem. 95 (2020) Article ID 103498; https://doi.org/10.1016/j.bioorg.2019.103498
- X. He, A. Alian and P. R. Ortiz De Montellano, Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides, Bioorg. Med. Chem. 15 (2007) 6649–6658; https://doi.org/10.1016/j.bmc.2007.08.013
- A. Chollet, G. Mori, C. Menendez, F. Rodriguez, I. Fabing, M. R. Pasca, J. Madacki, J. Korduláková, P. Constant, A. Quémard, V. Bernardes-Génisson, C. Lherbet and M. Baltas, Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth, Eur. J. Med. Chem. 101 (2015) 218–235; https://doi.org/10.1016/j.ejmech.2015.06.035
- U. H. Manjunatha, S. P. S. Rao, R. R. Kondreddi, C. G. Noble, L. R. Camacho, B. H. Tan, S. H. Ng, P. S. Ng, N. L. Ma, S. B. Lakshminarayana, M. Herve, S. W. Barnes, W. Yu, K. Kuhen, F. Blasco, D. Beer, J. R. Walker, P. J. Tonge, R. Glynne, P. W. Smith and T. T. Diagana, Direct inhibitors of InhA are active against Mycobacterium tuberculosis, Sci. Transl. Med. 7(269) (2015) Article ID p.269ra3; https://doi.org/10.1126/scitranslmed.3010597
- F. Roquet-Banères, M. Alcaraz, C. Hamela, J. Abendroth, T. E. Edwards and L. Kremer, In vitro and in vivo efficacy of NITD-916 against Mycobacterium fortuitum, Antimicrob. Agents Chemother. 67(4) (2023) e01607-22; https://doi.org/10.1128/aac.01607-22
- Y. Xia, Y. Zhou, D. S. Carter, M. B. McNeil, W. Choi, J. Halladay, P. W. Berry, W. Mao, V. Hernandez, T. O’Malley, A. Korkegian, B. Sunde, L. Flint, L. K. Woolhiser, M. S. Scherman, V. Gruppo, C. Hastings, G. T. Robertson, T. R. Ioerger, J. Sacchettini, P. J. Tonge, A. J. Lenaerts, T. Parish and M. R. K. Alley, Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA, Life Sci. Alliance 1(3) (2018) e201800025; https://doi.org/10.26508/lsa.201800025
- P. S. Shirude, P. Madhavapeddi, M. Naik, K. Murugan, V. Shinde, R. Nandishaiah, J. Bhat, A. Kumar, S. Hameed, G. Holdgate, G. Davies, H. McMiken, N. Hegde, A. Ambady, J. Venkatraman, M. Panda, B. Bandodkar, V. K. Sambandamurthy and J. A. Read, Methyl-thiazoles: A novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis, J. Med. Chem. 56 (21) (2013) 8533–8542; https://doi.org/10.1021/jm4012033
- M. Martínez-Hoyos, E. Perez-Herran, G. Gulten, L. Encinas, D. Álvarez-Gómez, E. Alvarez, S. Ferrer-Bazaga, A. García-Pérez, F. Ortega, I. Angulo-Barturen, J. Rullas-Trincado, D. Blanco Ruano, P. Torres, P. Castañeda, S. Huss, R. Fernández Menéndez, S. González Del Valle, L. Ballell, D. Barros, S. Modha, N. Dhar, F. Signorin-Gelo, J. D. McKinney, J. F. Garcia-Bustos, J. L. Lavandera, J. C. Sacchettini, M. Soledad Jimenez, N. Martin-Casabona, J. Castro-Pichel and A. Mendoza-Losana, Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor, eBioMed. 8 (2016) 291–301; https://doi.org/10.1016/j.ebiom.2016.05.006
- R. Šink, I. Sosič, M. Živec, R. Fernandez-Menendez, S. Turk, S. Pajk, D. Alvarez-Gomez, E. M. Lopez-Roman, C. Gonzales-Cortez, J. Rullas-Triconado, I. Angulo-Barturen, D. Barros, L. Ballell-Pages, R. J. Young, L. Encinas and S. Gobec, Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis, J. Med. Chem. 58(2) (2015) 613–624; https://doi.org/10.1021/jm501029r
- L. Encinas, S.-Y. Li, J. Rullas-Trincado, R. Tasneen, S. Tyagi, H. Soni, A. Garcia-Perez, J. Lee, R. González Del Río, J. De Mercado, V. Sousa, I. Sosič, S. Gobec, A. Mendoza-Losana, P. J. Converse, K. Mdluli, N. Fotouhi, D. Barros-Aguirre and E. L. Nuermberger, Contribution of direct InhA inhibitors to novel drug regimens in a mouse model of tuberculosis, Antimicrob. Agents Chemother. 68(11) (2024) e00357-24; https://doi.org/10.1128/aac.00357-24
- S. Pajk, M. Živec, R. Šink, I. Sosič, M. Neu, C. Chung, M. Martínez-Hoyos, E. Pérez-Herrán, D. Álvarez-Gómez, E. Álvarez-Ruíz, A. Mendoza-Losana, J. Castro-Pichel, D. Barros, L. Ballell-Pages, R. J. Young, M. A. Convery, L. Encinas and S. Gobec, New direct inhibitors of InhA with anti-mycobacterial activity based on a tetrahydropyran scaffold, Eur. J. Med. Chem. 112 (2016) 252–257; https://doi.org/10.1016/j.ejmech.2016.02.008
- J. S. Freundlich, F. Wang, C. Vilchèze, G. Gulten, R. Langley, G. A. Schiehser, D. P. Jacobus, W. R. Jacobs and J. C. Sacchettini, Triclosan derivatives: Towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis, ChemMedChem 4(2) (2009) 241–248; https://doi.org/10.1002/cmdc.200800261
- J. K. Barbay, W. Chai, W. Eccles, M. D. Hack, A. T. Herrmann, W. M. Jones, P. J. Krawczuk, K. D. Kreutter, A. D. Lebsack, D. J. Pippel, A. R. Rovira and R. L. Wolin, Small Molecule Inhibitors of NF-κB Inducing Kinase, WO 2020/239999 A1, 3 Dec 2020.
- J. Song, Y. Zhu, W. Zu, C. Duan, J. Xu, F. Jiang, X. Wang, S. Li, C. Liu, Q. Gao, H. Li, Y. Zhang, W. Tang, T. Lu and Y. Chen, The discovery of quinoline derivatives, as NF-κB inducing kinase (NIK) inhibitors with anti-inflammatory effects in vitro, low toxicities against T cell growth, Bioorg. Med. Chem. 29 (2021) Article ID 115856; https://doi.org/10.1016/j.bmc.2020.115856
- M. Isomura, D. A. Petrone and E. M. Carreira, Coordination-induced stereocontrol over carbocations: Asymmetric reductive deoxygenation of racemic tertiary alcohols, J. Am. Chem. Soc. 141(11) (2019) 4738–4748; https://doi.org/10.1021/jacs.9b00862
- M. R. Hall, M. Korb, S. A. Moggach and P. J. Low, Oxidative coupling of ruthenium alkenyl acetylide complexes as a route to dinuclear complexes featuring carbon-rich bridging ligands, Organometallics 41(21) (2022) 2958–2973; https://doi.org/10.1021/acs.organomet.2c00402
- G. Castanedo, J. Feng, C. A. G. N. Montalbetti, S. Staben, Tricyclic Compounds and Methods of Use Therefor, WO 2013/120980 A1, 22 Aug 2013.
- S. M. Min, F. M. Bashore, J. L. Smith, T. M. Havener, S. Howell, H. Li, R. M. Couñago, K. I. Popov and A. D. Axtman, Development of a second-generation, in vivo chemical probe for PIKfyve, J. Med. Chem. 68(3) (2025) 3282–3308; https://doi.org/10.1021/acs.jmedchem.4c02531
- L.-H. Chung, C.-F. Yeung, D.-L. Ma, C.-H. Leung and C.-Y. Wong, Metal-indolizine zwitterion complexes as a new class of organometallic material: A spectroscopic and theoretical investigation, Organometallics 33(13) (2014) 3443–3452; https://doi.org/10.1021/om5003705
- X. Wang, Q. Chen, J. Zhou, Y. Hu, S. Ye and J. Wu, Electrochemical synthesis of alkenylsulfonates from alkynes, NaHSO3 and alcohols, Chin. J. Chem. 43(3) (2025) 292–296; https://doi.org/10.1002/cjoc.202400962
- T. Zha, J. Rui, Z. Zhang, D. Zhang, Z. Yang, P. Yu, Y. Wang, F. Peng and Z. Shao, Direct catalytic asymmetric and regiodivergent N1- and C3-allenylic alkylation of indoles, Angew. Chem. Int. Ed. 62(21) (2023) Article ID e202300844; https://doi.org/10.1002/anie.202300844
- G. S. Sontakke, A. K. Chaturvedi, D. Jana and C. M. R. Volla, Pyrazolidinone-aided Ru(II)-catalyzed regioselective C–H annulation with allenes, Org. Lett. 26(21) (2024) 4480–4485; https://doi.org/10.1021/acs.orglett.4c01245
- L.-B. Han, Y. Ono and H. Yazawa, Nickel-catalyzed addition of P(O)−H bonds to propargyl alcohols: One-pot generation of phosphinoyl 1,3-butadienes, Org. Lett. 7(14) (2005) 2909–2911; https://doi.org/10.1021/ol0508431
- M. R. Hall, S. A. Moggach and P. J. Low, Syntheses and structures of trans -bis(alkenylacetylide) ruthenium complexes, Chemistry An Asian Journal 16(21) (2021) 3385–3403; https://doi.org/10.1002/asia.202100850
- Y.-T. Gu, D.-D. Chen, C.-B. Wang, Q. Cheng, J.-R. Han, X. Tian, S. Liu and W. Su, A mild and general trans-diboration of both terminal and internal propargyl alcohols, Org. Lett. 26(49) (2024) 10499–10504; https://doi.org/10.1021/acs.orglett.4c03841
- Q. Tao, H. Zhang, R. Ye, Y. Zhang, Y. Long and X. Zhou, Palladium-catalyzed synthesis of β-alkynyl ketones via selective 1,3-alkynyl migration of α,α-disubstituted allylic alcohols, J. Org. Chem. 89(18) (2024) 13208–13214; https://doi.org/10.1021/acs.joc.4c01332
- P. A. Baghurst and L. W. Nichol, The binding of organic phosphates to human methaemoglobin A. Perturbation of the polymerization of proteins by effectors, Biochim. Biophys. Acta 412(1) (1975) 168–180; https://doi.org/10.1016/0005-2795(75)90349-9
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, ıt OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallography 42 (2009) 339–341; https://doi.org/10.1107/S0021889808042726
- A. Giuliani, The application of principal component analysis to drug discovery and biomedical data, Drug Discov. Today 22(7) (2017) 1069–1076; https://doi.org/10.1016/j.drudis.2017.01.005
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Apll. Crystallography 39 (2006) 453–457; https://doi.org/10.1107/S002188980600731X
- Schrödinger Release 2023-1: Maestro, Schrödinger, LLC, New York 2021.
- N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminformatics 3 (2011) Article ID 33 (14 pages); https://doi.org/10.1186/1758-2946-3-33
- R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47(7) (2004) 1739–1749; https://doi.org/10.1021/jm0306430
- Schrödinger Release 2023-1: LigPrep, Schrödinger, LLC, New York 2021.
- J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin and M. Uchimaya, Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules, J. Comput. Aided Mol. Des. 21 (2007) 681–691; https://doi.org/10.1007/s10822-007-9133-z
- Y. Jiao, C. Cao and Z. Zhou, Direct synthesis of anti-1,3-diols through nonclassical reaction of aryl Grignard reagents with isopropenyl acetate, Org. Lett. 13(2) (2011) 180–183; https://doi.org/10.1021/ol102520y
- 47 Y. Jiao, W. Zhao, S. Deng, Z. Tang, W. Liu, Y. Wan and F. Zhong, A one-pot diastereoselective synthesis of 1,3-diols and 1,3,5-triols via cascade reactions of arylalkynyl Grignard reagents with enol esters, J. Chem. Res. 44(5-6) (2020) 255–266; https://doi.org/10.1177/1747519820908513