Have a personal or library account? Click to login
Phytochemical composition, antioxidant, antiglycation, and antihyperlipidemic activity of flowering parts from five plant species before and after in vitro digestion
J. Mlcek and O. Rop, Fresh edible flowers of ornamental plants – A new source of nutraceutical foods, <em>Trends Food Sci. Technol.</em> <bold>22</bold>(10) (2011) 561–569; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tifs.2011.04.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tifs.2011.04.006</a>">https://doi.org/10.1016/j.tifs.2011.04.006</ext-link>
T. C. S. P. Pires, M. I. Dias, L. Barros, R. C. Calhelha, M. J. Alves, M. B. P. P. Oliveira, C. Santos-Buelga and I. C. F. R. Ferreira, Edible flowers as sources of phenolic compounds with bioactive potential, <em>Food Res. Int.</em> <bold>105</bold> (2018) 580–588; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodres.2017.11.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodres.2017.11.014</a>">https://doi.org/10.1016/j.foodres.2017.11.014</ext-link>
European Medicines Agency, <em>Final European Union herbal monograph on</em> Calendula officinalis <em>L.</em>, <em>flos –</em> Revision 1, EMA, June 2018; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-calendula-officinalis-l-flos-revision-1_en.pdf">https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-calendula-officinalis-l-flos-revision-1_en.pdf</ext-link>; last access date March 12, 2025.
European Medicines Agency, <em>Final European Union herbal monograph on</em> Malva sylvestris <em>L., flos –</em> First version, EMA, March 2019; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-malva-sylvestris-l-andor-malva-neglecta-wallr-folium-first-version_en.pdf">https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-malva-sylvestris-l-andor-malva-neglecta-wallr-folium-first-version_en.pdf</ext-link>; last access date March 12, 2025.
F. de Lima Franzen, M. S. Rodríguez de Oliveira, H. F. Lidório, J. Farias Menegaes and L. L. Martins Fries, Chemical composition of rose, sunflower and calendula flower petals for human food use, <em>Cienc. Tecnol. Agropecuaria</em> <bold>20</bold>(1) (2019) 149–168; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21930/rcta.vol20_num1_art:1252" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21930/rcta.vol20_num1_art:1252</a>">https://doi.org/10.21930/rcta.vol20_num1_art:1252</ext-link>
T. C. Pires, M. I. Dias, L. Barros and I. C. Ferreira, Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients, <em>Food Chem.</em> <bold>220</bold> (2017) 337–343; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodchem.2016.10.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2016.10.026</a>">https://doi.org/10.1016/j.foodchem.2016.10.026</ext-link>
Q. Liang, J. Cui, H. Li, J. Liu and G. Zhao, Florets of sunflower (<em>Helianthus annuus</em> L.): Potential new sources of dietary fiber and phenolic acids, <em>J. Agric. Food Chem.</em> <bold>61</bold>(14) (2013) 3435–3442; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jf400569a" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jf400569a</a>">https://doi.org/10.1021/jf400569a</ext-link>
G. Bragueto Escher, L. do C. Cardoso Borges, J. Sousa Santos, T. Mendanha Cruz, M. Boscacci Marques, M. Araújo Vieira do Carmo, L. Azevedo, M. M. Furtado, A. S. Sant’Ana, M. Wen, L. Zhang and D. Granato, From the field to the pot: Phytochemical and functional analyses of <em>Calendula officinalis</em> L. flower for incorporation in an organic yogurt, <em>Antioxidants</em> <bold>8</bold>(11) (2019) Article ID 559 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/antiox8110559" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antiox8110559</a>">https://doi.org/10.3390/antiox8110559</ext-link>
J. A. Takahashi, F. A. G. G. Rezende, M. A. F. Moura, L. C. B. Dominguete and D. Sande, Edible flowers: Bioactive profile and its potential to be used in food development, <em>Food Res. Int.</em> <bold>129</bold> (2020) Article ID 108868 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodres.2019.108868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodres.2019.108868</a>">https://doi.org/10.1016/j.foodres.2019.108868</ext-link>
F. Ye, Q. Liang, H. Li and G. Zhao, Solvent effects on phenolic content, composition, and antioxidant activity of extracts from florets of sunflower (<em>Helianthus annuus</em> L.), <em>Ind. Crops Prod.</em> <bold>76</bold> (2015) 574–581; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.indcrop.2015.07.063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.indcrop.2015.07.063</a>">https://doi.org/10.1016/j.indcrop.2015.07.063</ext-link>
I. G. Munteanu and C. Apetrei, Analytical methods used in determining antioxidant activity: A review, <em>Int. J. Mol. Sci.</em> <bold>22</bold>(7) (2021) Article ID 3380 (30 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22073380" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22073380</a>">https://doi.org/10.3390/ijms22073380</ext-link>
R. L. Prior, X. Wu and K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, <em>J. Agric. Food Chem.</em> <bold>53</bold>(10) (2005) 4290–4302; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jf0502698" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jf0502698</a>">https://doi.org/10.1021/jf0502698</ext-link>
M. Banožić, J. Babić and S. Jokić, Recent advances in extraction of bioactive compounds from tobacco industrial waste – a review, <em>Ind. Crops Prod.</em> <bold>144</bold> (2020) Article ID 112009; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.indcrop.2019.112009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.indcrop.2019.112009</a>">https://doi.org/10.1016/j.indcrop.2019.112009</ext-link>
M. Leal, M. A. Moreno, P. L. Albornoz, M. I. Mercado, I. C. Zampini and M. I. Isla, Morphological characterization of <em>Nicotiana tabacum</em> inflorescences and chemical-functional analysis of extracts obtained from its powder by using green solvents (NaDESs), <em>Plants</em> <bold>12</bold>(7) (2023) Article ID 1554 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/plants12071554" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants12071554</a>">https://doi.org/10.3390/plants12071554</ext-link>
S. M. Jadouali, H. Atifi, R. Mamouni, K. Majourhat, Z. Bouzoubaa and S. Gharby, Composition of saffron by-products (<em>Crocus sativus</em>) in relation to utilization as animal feed, <em>Agric. Sci. Dig.</em> <bold>42</bold>(4) (2022) 475–481; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.18805/ag.D-360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18805/ag.D-360</a>">https://doi.org/10.18805/ag.D-360</ext-link>
J. Serrano-Díaz, A. M. Sánchez, M. Martínez-Tomé, P. Winterhalter and G. L. Alonso, A contribution to nutritional studies on <em>Crocus sativus</em> flowers and their value as food, <em>J. Food Compost. Anal.</em> <bold>31</bold>(1) (2013) 101–108; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jfca.2013.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfca.2013.03.009</a>">https://doi.org/10.1016/j.jfca.2013.03.009</ext-link>
S. M. Jadouali, H. Atifi, R. Mamouni, K. Majourhat, Z. Bouzoubaâ, A. Laknifli and A. Faouzi, Chemical characterization and antioxidant compounds of flower parts of Moroccan <em>Crocus sativus</em> L., <em>J. Saudi Soc. Agric. Sci</em>. <bold>18</bold>(4) (2019) 476–480; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jssas.2018.03.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jssas.2018.03.007</a>">https://doi.org/10.1016/j.jssas.2018.03.007</ext-link>
J. Serrano-Díaz, A. M. Sánchez, L. Maggi, M. Martínez-Tomé, L. García-Diz, M. A. Murcia and G. L. Alonso, Increasing the applications of <em>Crocus sativus</em> flowers as natural antioxidants, <em>J. Food Sci.</em> <bold>77</bold>(11) (2012) C1162–C1168; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1750-3841.2012.02926.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1750-3841.2012.02926.x</a>">https://doi.org/10.1111/j.1750-3841.2012.02926.x</ext-link>
N. Belyagoubi-Benhammou, L. Belyagoubi, B. Loukidi, M. A. Mir, E. Assadpour, M. Boudghene-Stambouli, M. S. Kharazmi and S. M. Jafari, Bioactivity and applications of saffron floral bio-residues (tepals): a natural by-product for the food, pharmaceutical, and cosmetic industries, <em>Crit. Rev. Food Sci Nutr.</em> <bold>64</bold>(23) (2024) 8399–8413; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/10408398.2023.2199434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/10408398.2023.2199434</a>">https://doi.org/10.1080/10408398.2023.2199434</ext-link>
V. Masala, S. Jokić, K. Aladić, M. Molnar and C. I. G. Tuberoso, Exploring phenolic compounds extraction from saffron (<em>C. sativus</em>) floral by-products using ultrasound-assisted extraction, deep eutectic solvent extraction, and subcritical water extraction, <em>Molecules</em> <bold>29</bold>(11) (2024) Article ID 2600 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules29112600" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules29112600</a>">https://doi.org/10.3390/molecules29112600</ext-link>
A. T. Vardakas, V. T. Shikov, R. H. Dinkova and K. M. Mihalev, Optimisation of the enzyme- assisted extraction of polyphenols from saffron (<em>Crocus sativus</em> L.) tepals, <em>Acta Sci. Pol. Technol. Aliment.</em> <bold>20</bold>(3) (2021) 359–367; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17306/J.AFS.0954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17306/J.AFS.0954</a>">https://doi.org/10.17306/J.AFS.0954</ext-link>
American Diabetes Association Professional Practice Committee, Introduction and methodology: Standards of care in diabetes – 2024, <em>Diabetes Care</em> <bold>47</bold>(Suppl 1) (2024) S1–S4; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2337/dc24-SINT" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2337/dc24-SINT</a>">https://doi.org/10.2337/dc24-SINT</ext-link>
N. F. Khedr, A. M. Ebeid and R. M. Khalil, New insights into weight management by orlistat in comparison with cinnamon as a natural lipase inhibitor, <em>Endocrine</em> <bold>67</bold>(1) (2020) 109–116; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12020-019-02127-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12020-019-02127-0</a>">https://doi.org/10.1007/s12020-019-02127-0</ext-link>
V. Spínola and P. C. Castilho, Assessing the in vitro inhibitory effects on key enzymes linked to type-2 diabetes and obesity and protein glycation by phenolic compounds of Lauraceae plant species endemic to the Laurisilva forest, <em>Molecules</em> <bold>26</bold>(7) (2021) Article ID 2023 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules26072023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules26072023</a>">https://doi.org/10.3390/molecules26072023</ext-link>
N. A. Lunagariya, N. K. Patel, S. C. Jagtap and K. K. Bhutani, Inhibitors of pancreatic lipase: State of the art and clinical perspectives, <em>EXCLI J.</em> <bold>13</bold> (2014) 897–921.
V. Vujčić Bok, I. Šola and G. Rusak, Lemon juice formulations modulate <em>in vitro</em> digestive recovery of spinach phytochemicals, <em>Food Technol. Biotechnol.</em> <bold>60</bold>(3) (2022) 293–307; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17113/ftb.60.03.22.7104" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17113/ftb.60.03.22.7104</a>">https://doi.org/10.17113/ftb.60.03.22.7104</ext-link>
I. Šola, V. Vujčić Bok, M. Pinterić, S. Auer, J. Ludwig-Müller and G. Rusak, Improving the phyto-chemical profile and bioactivity of Chinese cabbage sprouts by interspecific transfer of metabolites, <em>Food Res. Int.</em> <bold>137</bold> (2020) Article ID 109726; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.foodres.2020.109726" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodres.2020.109726</a>">https://doi.org/10.1016/j.foodres.2020.109726</ext-link>
I. Šola, V. Vujčić Bok, M. Dujmović and G. Rusak, Developmentally-related changes in phenolic and l-ascorbic acid content and antioxidant capacity of Chinese cabbage sprouts, <em>J. Food Sci. Technol.</em> <bold>57</bold>(2) (2020) 702–712; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13197-019-04103-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13197-019-04103-y</a>">https://doi.org/10.1007/s13197-019-04103-y</ext-link>
I. Šola, V. Vujčić Bok, M. Popović and S. Gagić, Phytochemical composition and functional properties of Brassicaceae microgreens: Impact of in vitro digestion, <em>Int. J. Mol. Sci.</em> <bold>25</bold>(21) (2024) Article ID 11831 (24 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms252111831" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms252111831</a>">https://doi.org/10.3390/ijms252111831</ext-link>
V. Vujčić, S. Radić Brkanac, I. Radojčić Redovniković, S. Ivanković, R. Stojković, I. Žilić and M. Radić Stojković, Phytochemical and bioactive potential of <em>in vivo</em> and <em>in vitro</em> grown plants of <em>Centaurea ragusina</em> L. – Detection of DNA/RNA active compounds in plant extracts via thermal denaturation and circular dichroism: Phytochemical and bioactive characterization of <em>Centaurea ragusina</em> L., <em>Phytochem. Anal.</em> <bold>28</bold>(6) (2017) 584–592; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pca.2708" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pca.2708</a>">https://doi.org/10.1002/pca.2708</ext-link>
S. R. Brkanac, M. Gerić, G. Gajski, V. Vujčić, V. Garaj-Vrhovac, D. Kremer and A.-M. Domijan, Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin, <em>Regul. Toxicol. Pharmacol.</em> <bold>73</bold>(3) (2015) 923–929; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.yrtph.2015.09.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.yrtph.2015.09.025</a>">https://doi.org/10.1016/j.yrtph.2015.09.025</ext-link>
V. Vujčić Bok, I. Šola, G. Rusak, A. Budisavljević, R. Nguyen, J. Ludwig-Müller and Ž. Maleš, Phenolic content and antioxidant activity of Croatian and German honey, <em>Acta Pharm.</em> <bold>74</bold>(4) (2025) 673–692; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/acph-2024-0031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/acph-2024-0031</a>">https://doi.org/10.2478/acph-2024-0031</ext-link>
V. Spinola, J. Pinto and P. C. Castilho, Hypoglycemic, antiglycation and antioxidant in vitro properties of two vaccinium species from Macaronesia: A relation to their phenolic composition, <em>J. Funct. Foods</em> <bold>40</bold> (2018) 595–605; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jff.2017.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jff.2017.12.002</a>">https://doi.org/10.1016/j.jff.2017.12.002</ext-link>
V. Spinola, E. J. Llorent-Martínez and P. C. Castilho, Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of <em>Rumex maderensis</em> (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation, <em>LWT</em> <bold>118</bold> (2020) Article ID 108727; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.lwt.2019.108727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2019.108727</a>">https://doi.org/10.1016/j.lwt.2019.108727</ext-link>
I. Šola, M. Stipaničev, V. Vujčić, B. Mitić, A. Huđek and G. Rusak, Comparative analysis of native <em>Crocus taxa</em> as a great source of flavonoids with high antioxidant activity, <em>Plant Foods Hum. Nutr.</em> <bold>73</bold>(3) (2018) 189–195; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11130-018-0674-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11130-018-0674-1</a>">https://doi.org/10.1007/s11130-018-0674-1</ext-link>
G. Rusak, V. Vujčić Bok, I. Šola, E. Nikša and Ž. Maleš, Effect of protein, carbohydrate, and oil on phytochemical bioaccessibility and bioactivities of the <em>Ginkgo biloba</em> L. leaf formulations after in vitro digestion, <em>Molecules</em> <bold>29</bold>(22) (2024) Article ID 5300 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules29225300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules29225300</a>">https://doi.org/10.3390/molecules29225300</ext-link>
D. Hernández-Saavedra, I. F. Pérez-Ramírez, M. Ramos-Gómez, S. Mendoza-Díaz, G. Loarca-Pina and R. Reynoso-Camacho, Phytochemical characterization and effect of <em>Calendula officinalis</em>, <em>Hypericum perforatum</em>, and <em>Salvia officinalis</em> infusions on obesity-associated cardiovascular risk, <em>Med. Chem. Res.</em> <bold>25</bold>(1) (2016) 163–172; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00044-015-1454-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00044-015-1454-1</a>">https://doi.org/10.1007/s00044-015-1454-1</ext-link>
M. Zor, B. Özüpek, S. Pekacar and D. Deliorman Orhan, Antioxidants, enzyme inhibitory activities, and phytochemical profiles of seven medicinal plants grown with organic farming techniques, <em>Turk. J. Agric. For.</em> <bold>47</bold>(6) (2023) 918–930; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.55730/1300-011X.3137" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.55730/1300-011X.3137</a>">https://doi.org/10.55730/1300-011X.3137</ext-link>
M. Marrelli, M. R. Loizzo, M. Nicoletti, F. Menichini and F. Conforti, Inhibition of key enzymes linked to obesity by preparations from Mediterranean dietary plants: effects on α-amylase and pancreatic lipase activities, <em>Plant Foods Hum. Nutr.</em> <bold>68</bold>(4) (2013) 340–346; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11130-013-0390-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11130-013-0390-9</a>">https://doi.org/10.1007/s11130-013-0390-9</ext-link>
Z. Sun, J. Chen, J. Ma, Y. Jiang, M. Wang, G. Ren and F. Chen, Cynarin-rich sunflower (<em>Helianthus annuus</em>) sprouts possess both antiglycative and antioxidant activities, <em>J. Agric. Food Chem.</em> <bold>60</bold>(12) (2012) 3260–3265; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jf300737y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jf300737y</a>">https://doi.org/10.1021/jf300737y</ext-link>
H. Ahmad, I. Khan and A. Wahid, Antiglycation and antioxidation properties of <em>Juglans regia</em> and <em>Calendula officinalis</em>: possible role in reducing diabetic complications and slowing down ageing, <em>J. Tradit. Chin. Med.</em> <bold>32</bold>(3) (2012) 411–414; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0254-6272(13)60047-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0254-6272(13)60047-3</a>">https://doi.org/10.1016/s0254-6272(13)60047-3</ext-link>
S. Ronsisvalle, A. Panico, D. Santonocito, E. A. Siciliano, F. Sipala, L. Montenegro and C. Puglia, Evaluation of crocin content and in vitro antioxidant and anti-glycation activity of different saffron extracts, <em>Plants</em> <bold>12</bold>(20) (2023) Article ID 3606 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/plants12203606" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants12203606</a>">https://doi.org/10.3390/plants12203606</ext-link>
T. van Der Lugt, K. Venema, S. van Leeuwen, M. F. Vrolijk, A. Opperhuizen and A. Bast, Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1), <em>Food Funct.</em> <bold>11</bold>(7) (2020) 6297–6307; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/d0fo00450b" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/d0fo00450b</a>">https://doi.org/10.1039/d0fo00450b</ext-link>
C. Cerami, H. Founds, I. Nicholl, T. Mitsuhashi, D. Giordano, S. Vanpatten, A. Lee, Y. Al-Abed, H. Vlassara and R. Bucala, Tobacco smoke is a source of toxic reactive glycation products, <em>Proc. Natl. Acad. Sci. USA</em> <bold>94</bold>(25) (1997) 13915–13920; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1073/pnas.94.25.13915" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.94.25.13915</a>">https://doi.org/10.1073/pnas.94.25.13915</ext-link>