Have a personal or library account? Click to login
Optimization of 6-(trifluoromethyl)pyrimidine derivatives as TLR8 antagonists Cover

Optimization of 6-(trifluoromethyl)pyrimidine derivatives as TLR8 antagonists

Open Access
|Jul 2025

References

  1. K. A. Fitzgerald and J. C. Kagan, Toll-like receptors and the control of immunity, Cell 180(6) (2020) 1044–1066; https://doi.org/10.1016/j.cell.2020.02.041
  2. C. A. Janeway and R. Medzhitov, Innate immune recognition, Annu. Rev. Immunol. 20 (2002) 197–216; https://doi.org/10.1146/annurev.immunol.20.083001.084359
  3. R. Medzhitov, Toll-like receptors and innate immunity, Nat. Rev. Immunol. 1 (2001) 135–145; https://doi.org/10.1038/35100529
  4. T. Kawai and S. Akira, Toll-like receptors and their crosstalk with other innate receptors in infection and immunity, Immunity 34(5) (2011) 637–650; https://doi.org/10.1016/j.immuni.2011.05.006
  5. F. J. Barrat and R. L. Coffman, Development of TLR inhibitors for the treatment of autoimmune diseases, Immunol. Rev. 223(1) (2008) 271–283; https://doi.org/10.1111/j.1600-065X.2008.00630.x
  6. I. Martínez-Espinoza and A. Guerrero-Plata, The relevance of TLR8 in viral infections, Pathogens 11(2) (2022) Article ID 134; https://doi.org/10.3390/pathogens11020134
  7. M. J. Braunstein, J. Kucharczyk and S. Adams, Targeting Toll-like receptors for cancer therapy, Targ. Oncol. 13 (2018) 583–598; https://doi.org/10.1007/s11523-018-0589-7
  8. J. A. Hamerman and G. M. Barton, The path ahead for understanding Toll-like receptor-driven systemic autoimmunity, Curr. Opin. Immunol. 91 (2024) Article ID 102482; https://doi.org/10.1016/j.coi.2024.102482
  9. J.-Q. Chen, P. Szodoray and M. Zeher, Toll-like receptor pathways in autoimmune diseases, Clinic Rev. Allerg. Immunol. 50 (2016) 1–17; https://doi.org/10.1007/s12016-015-8473-z
  10. C.-Y. Lai, Y.-W. Su, K.-I. Lin, L.-C. Hsu and T.-H. Chuang, Natural modulators of endosomal Toll-like receptor-mediated psoriatic skin inflammation, J. Immunol. Res. 2017 (2017) Article ID 7807313 (15 pages); https://doi.org/10.1155/2017/7807313
  11. T. Celhar and A.-M. Fairhurst, Toll-like receptors in systemic lupus erythematosus: Potential for personalized treatment, Front. Pharmacol. 5 (2014) Article ID 265 (8 pages); https://doi.org/10.3389/fphar.2014.00265
  12. D. -Y. Oh, S. Taube, O. Hamouda, C. Kücherer, G. Poggensee, H. Jessen, J. K. Eckert, K. Neumann, A. Storek, M. Pouliot, P. Borgeat, N. Oh, E. Schreier, A. Pruss, K. Hattermann and R. R. Schumann, A functional Toll-like receptor 8 variant is associated with HIV disease restriction, J. Infecty. Dis. 198(5) (2008) 701–709; https://doi.org/10.1086/590431
  13. H. Z. Meås, M. Haug, M. S. Beckwith, C. Louet, L. Ryan, Z. Hu, J. Landskron, S. A. Nordbø, K. Taskén, H. Yin, J. K. Damås and T. H. Flo, Sensing of HIV-1 by TLR8 activates human T cells and reverses latency, Nat. Commun. 11 (2020) Article ID 147 (16 pages); https://doi.org/10.1038/s41467-019-13837-4
  14. T. Knoepfel, P. Nimsgern, S. Jacquier, M. Bourrel, E. Vangrevelinghe, R. Glatthar, D. Behnke, P. B. Alper, P.-Y. Michellys, J. Deane, T. Junt, G. Zipfel, S. Limonta, S. Hawtin, C. Andre, T. Boulay, P. Loetscher, M. Faller, J. Blank, R. Feifel and C. Betschart, Target-based identification and optimization of 5-indazol-5-yl pyridones as Toll-like receptor 7 and 8 antagonists using a biochemical TLR8 antagonist competition assay, J. Med. Chem. 63(15) (2020) 8276–8295; https://doi.org/10.1021/acs.jmedchem.0c00130
  15. P. B. Alper, J. Deane, C. Betschart, D. Buffet, G. Collignon Zipfel, P. Gordon, J. Hampton, S. Hawtin, M. Ibanez, T. Jiang, T. Junt, T. Knoepfel, B. Liu, J. Maginnis, U. McKeever, P.-Y. Michellys, D. Mut-nick, B. Nayak, S. Niwa, W. Richmond and X. Zhu, Discovery of potent, orally bioavailable in vivo efficacious antagonists of the TLR7/8 pathway, Bioorg. Med. Chem. Lett. 30(17) (2020) Article ID 127366; https://doi.org/10.1016/j.bmcl.2020.127366
  16. C. P. Mussari, D. S. Dodd, R. K. Sreekantha, L. Pasunoori, H. Wan, S. L. Posy, D. Critton, S. Ruepp, M. Subramanian, A. Watson, P. Davies, G. L. Schieven, L. M. Salter-Cid, R. Srivastava, D. M. Tagore, S. Dudhgaonkar, M. A. Poss, P. H. Carter and A. J. Dickman, Discovery of potent and orally bioavailable small molecule antagonists of Toll-like receptors 7/8/9 (TLR7/8/9), ACS Med. Chem. Lett. 11(9) (2020) 1751–1758; https://doi.org/10.1021/acsmedchemlett.0c00264
  17. M. Grabowski, M. Bermudez, T. Rudolf, D. Šribar, P. Varga, M. S. Murgueitio, G. Wolber, J. Rade-mann and G. Weindl, Identification and validation of a novel dual small-molecule TLR2/8 anta- gonist, Biochem. Pharmacol. 177 (2020) Article ID 113957; https://doi.org/10.1016/j.bcp.2020.113957
  18. A. Dolšak, D. Šribar, A. Scheffler, M. Grabowski, U. Švajger, S. Gobec, J. Holze, G. Weindl, G. Wolber and M. Sova, Further hit optimization of 6-(trifluoromethyl)pyrimidin-2-amine based TLR8 modulators: Synthesis, biological evaluation and structure–activity relationships, Eur. J. Med. Chem. 225 (2021) Article ID 113809; https://doi.org/10.1016/j.ejmech.2021.113809
  19. D. Šribar, M. Grabowski, M. S. Murgueitio, M. Bermudez, G. Weindl and G. Wolber, Identification and characterization of a novel chemotype for human TLR8 inhibitors, Eur. J. Med. Chem. 179 (2019) 744–752; https://doi.org/10.1016/j.ejmech.2019.06.084
  20. J. J. Naleway, Y. Jiang and R. Link-Cole, Reagents and methods for direct labeling of nucleotides; Retrieved from https://patents.google.com/patent/US20130150254A1/en?oq=US20130150254
  21. N. Varga, I. Sutkeviciute, C. Guzzi, J. McGeagh, I. Petit-Haertlein, S. Gugliotta, J. Weiser, J. Angulo, F. Fieschi and A. Bernardi, Selective targeting of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) with mannose-based glycomimetics: Synthesis and interaction studies of bis(benzylamide) derivatives of a pseudomannobioside, Chem. Eur. J. 19(15) (2013) 4786–4797; https://doi.org/10.1002/chem.201202764
  22. M. Grabowski, M. S. Murgueitio, M. Bermudez, J. Rademann, G. Wolber and G. Weindl, Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening, Biochem. Pharmacol. 154 (2018) 148–160; https://doi.org/10.1016/j.bcp.2018.04.018
  23. J. Holze, F. Lauber, S. Soler, E. Kostenis and G. Weindl, Label-free biosensor assay decodes the dynamics of Toll-like receptor signaling, Nat. Commun. 15 (2024) Article ID 9554 (18 pages); https://doi.org/10.1038/s41467-024-53770-9
  24. P. Labute, Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures, Proteins 75(1) (2009) 187–205; https://doi.org/10.1002/prot.22234
  25. G. Jones, P. Willett, R. C. Glen, A. R. Leach and R. Taylor, Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol. 267(3) (1997) 727–748; https://doi.org/10.1006/jmbi.1996.0897
  26. O. Korb, T. Stützle and T. E. Exner, Empirical scoring functions for advanced protein-ligand docking with PLANTS, J. Chem. Inf. Model. 49(1) (2009) 84–96; https://doi.org/10.1021/ci800298z
  27. T. A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17(5–6) (1996) 490–519; https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  28. G. Wolber and T. Langer, LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters, J. Chem. Inf. Model. 45(1) (2005) 160–169; https://doi.org/10.1021/ci049885e
  29. P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A 105(43) (2001) 9954–9960; https://doi.org/10.1021/jp003020w
  30. E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel and R. A. Friesner, OPLS3: A force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput. 12(1) (2016) 281–296; https://doi.org/10.1021/acs.jctc.5b00864
  31. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2) (1984) 255–268; https://doi.org/10.1080/00268978400101201
  32. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A Gen. Phys. 31 (1985) 1695–1697; https://doi.org/10.1103/physreva.31.1695
  33. G. J. Martyna, M. E. Tuckerman, D. J. Tobias and M. L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87(5) (1996) 1117–1157; https://doi.org/10.1080/00268979600100761
  34. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14(1) (1996) 33–38; https://doi.org/10.1016/0263-7855(96)00018-5
  35. A. Bock, M. Bermudez, F. Krebs, C. Matera, B. Chirinda, D. Sydow, C. Dallanoce, U. Holzgrabe, M. De Amici, M. J. Lohse, G. Wolber and K. Mohr, Ligand binding ensembles determine graded agonist efficacies at a G protein-coupled receptor, J. Biol. Chem. 291(31) (2016) 16375–16389; https://doi.org/10.1074/jbc.M116.735431
  36. M. Janežič, K. Valjavec, K. B. Loboda, B. Herlah, I. Ogris, M. Kozorog, M. Podobnik, S. G. Grdadolnik, G. Wolber and A. Perdih, Dynophore-based approach in virtual screening: A case of human DNA topoisomerase IIα, Int. J. Mol. Sci. 22(24) (2021) Article ID 13474; https://doi.org/10.3390/ijms222413474
  37. N. Fuchs, L. Calvo-Barreiro, V. Talagayev, S. Pach, G. Wolber and M. T. Gabr, From virtual screens to cellular target engagement: New small molecule ligands for the immune checkpoint LAG-3, ACS Med. Chem. Lett. 15(11) (2024) 1884–1890; https://doi.org/10.1021/acsmedchemlett.4c00350
  38. H. Tanji, U. Ohto, T. Shibata, K. Miyake and T. Shimizu, Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands, Science 339(6126) (2013) 1426–1429; https://doi.org/10.1126/science.1229159
  39. S. Zhang, Z. Hu, H. Tanji, S. Jiang, N. Das, J. Li, K. Sakaniwa, J. Jin, Y. Bian, U. Ohto, T. Shimizu and H. Yin, Small-molecule inhibition of TLR8 through stabilization of its resting state, Nat. Chem. Biol. 14 (2018) 58–64; https://doi.org/10.1038/nchembio.2518
  40. T. Matziol, V. Talagayev, T. Slokan, N. Strašek Benedik, J. Holze, M. Sova, G. Wolber and G. Weindl, Discovery of novel isoxazole-based small-molecule Toll-like receptor 8 antagonists, J. Med. Chem. 68(4) (2025) 4888–4907; https://doi.org/10.1021/acs.jmedchem.4c03148
  41. Z. Hu, H. Tanji, S. Jiang, S. Zhang, K. Koo, J. Chan, K. Sakaniwa, U. Ohto, A. Candia, T. Shimizu and H. Yin, Small-molecule TLR8 antagonists via structure-based rational design, Cell. Chem. Biol. 25(10) (2018) 1286–1291; https://doi.org/10.1016/j.chembiol.2018.07.004
DOI: https://doi.org/10.2478/acph-2025-0011 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 159 - 183
Accepted on: Mar 28, 2025
Published on: Jul 3, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Nika Strašek Benedik, Valerij Talagayev, Troy Matziol, Ana Dolšak, Izidor Sosič, Günther Weindl, Gerhard Wolber, Matej Sova, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.