Have a personal or library account? Click to login
Synthesis and biochemical evaluation of new 3-amido-4-substituted monocyclic ß-lactams as inhibitors of penicillin-binding protein(s) Cover

Synthesis and biochemical evaluation of new 3-amido-4-substituted monocyclic ß-lactams as inhibitors of penicillin-binding protein(s)

Open Access
|Sep 2024

References

  1. C. J. Murray, K. S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, <em>et al</em>., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, <em>Lancet</em> <bold>399</bold>(10325) (2022) 629–655; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0140-6736(21)02724-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0140-6736(21)02724-0</a>">https://doi.org/10.1016/S0140-6736(21)02724-0</ext-link>
  2. World Health Organization, <em>2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis</em>, WHO, Geneva, April 15, 2021; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.who.int/publications-detail-redirect/9789240021303;">https://www.who.int/publications-detail-redirect/9789240021303;</ext-link> last access May 25, 2022
  3. A. Zervosen, E. Sauvage, J. M. Frère, P. Charlier and A. Luxen, Development of new drugs for an old target – the penicillin binding proteins, <em>Molecules</em> <bold>17</bold>(11) (2012) 12478–12505; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules171112478" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules171112478</a>">https://doi.org/10.3390/molecules171112478</ext-link>
  4. P. J. Matteï, D. Neves and A. Dessen, Bridging cell wall biosynthesis and bacterial morphogenesis, <em>Curr. Opin. Struct. Biol.</em> <bold>20</bold>(6) (2010) 749–755; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.sbi.2010.09.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sbi.2010.09.014</a>">https://doi.org/10.1016/j.sbi.2010.09.014</ext-link>
  5. A. J. Meeske, E. P. Riley, W. P. Robins, T. Uehara, J. J. Mekalanos, D. Kahne, S. Walker, A. C. Kruse, T. G. Bernhardt and D. Z. Rudner, SEDS proteins are a widespread family of bacterial cell wall polymerases, <em>Nature</em> <bold>537</bold>(7622) (2016) 634–638; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nature19331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nature19331</a>">https://doi.org/10.1038/nature19331</ext-link>
  6. J. F. Fisher, S. O. Meroueh and S. Mobashery, Bacterial resistance to β-lactam antibiotics:  compelling opportunism, compelling opportunity, <em>Chem. Rev.</em> <bold>105</bold>(2) (2005) 395–424; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/cr030102i" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/cr030102i</a>">https://doi.org/10.1021/cr030102i</ext-link>
  7. E. Sauvage and M. Terrak, Glycosyltransferases and transpeptidases/penicillin-binding proteins: valuable targets for new antibacterials, <em>Antibiotics</em> <bold>5</bold>(1) (2016) Article ID 12 (27 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/antibiotics5010012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics5010012</a>">https://doi.org/10.3390/antibiotics5010012</ext-link>
  8. E. Sauvage, F. Kerff, M. Terrak, J. A. Ayala and P. Charlier, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis, <em>FEMS Microbiol. Rev.</em> <bold>32</bold>(2) (2008) 234–258; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1574-6976.2008.00105.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6976.2008.00105.x</a>">https://doi.org/10.1111/j.1574-6976.2008.00105.x</ext-link>
  9. P. Macheboeuf, C. Contreras-Martel, V. Job, O. Dideberg and A. Dessen, Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes, <em>FEMS Microbiol. Rev.</em> <bold>30</bold>(5) (2006) 673–691; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1574-6976.2006.00024.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6976.2006.00024.x</a>">https://doi.org/10.1111/j.1574-6976.2006.00024.x</ext-link>
  10. W. Vollmer, D. Blanot and M. A. de Pedro, Peptidoglycan structure and architecture, <em>FEMS Microbiol.Rev.</em><bold>32</bold>(2) (2008) 149–167; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1574-6976.2007.00094.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6976.2007.00094.x</a>">https://doi.org/10.1111/j.1574-6976.2007.00094.x</ext-link>
  11. A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of <em>B. influenzae</em>, <em>Bull. World Health Organ</em>. <bold>79</bold>(8) (2001) 780–790.
  12. E. P. Abraham, E. Chain, C. M. Fletcher, A. D. Gardner, N. G. Heatley, M. A. Jennings and H. W. Florey, Further observations on penicillin, <em>Lancet</em> <bold>238</bold>(6155) (1941) 177–189; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0140-6736(00)72122-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0140-6736(00)72122-2</a>">https://doi.org/10.1016/S0140-6736(00)72122-2</ext-link>
  13. World Health Organization, <em>WHO Report on Surveillance of Antibiotic Consumption</em>, WHO, Geneva, July 21, 2019; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.who.int/publications-detail-redirect/who-report-on-surveillance-of-antibiotic-consumption;">https://www.who.int/publications-detail-redirect/who-report-on-surveillance-of-antibiotic-consumption;</ext-link> last access June 4, 2022
  14. G. Patrick, <em>An Introduction to Medicinal Chemistry</em>, 6th ed., Oxford University Press, Oxford 2017.
  15. L. M. Lima, B. N. M. da Silva, G. Barbosa and E. J. Barreiro, β-lactam antibiotics: an overview from a medicinal chemistry perspective, <em>Eur. J. Med. Chem.</em> <bold>208</bold> (2020) Article ID 112829 (21 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejmech.2020.112829" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejmech.2020.112829</a>">https://doi.org/10.1016/j.ejmech.2020.112829</ext-link>
  16. A. Zapun, C. Contreras-Martel and T. Vernet, Penicillin-binding proteins and β-lactam resistance, <em>FEMS Microbiol. Rev.</em> <bold>32</bold>(2) (2008) 361–385; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1574-6976.2007.00095.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6976.2007.00095.x</a>">https://doi.org/10.1111/j.1574-6976.2007.00095.x</ext-link>
  17. S. Deketelaere, T. Van Nguyen, C. V. Stevens and M. D’hooghe, Synthetic approaches toward monocyclic 3-amino-β-lactams, <em>ChemistryOpen</em> <bold>6</bold>(3) (2017) 301–319; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/open.201700051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/open.201700051</a>">https://doi.org/10.1002/open.201700051</ext-link>
  18. L. Decuyper, M. Jukič, I. Sosič, A. Žula, M. D’hooghe and S. Gobec, Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams, <em>Med. Res. Rev.</em> <bold>38</bold>(2) (2018) 426–503; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/med.21443" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/med.21443</a>">https://doi.org/10.1002/med.21443</ext-link>
  19. D. Braga and G. Lackner, One ring to fight them all: the sulfazecin story, <em>Cell Chem. Biol.</em> <bold>24</bold>(1) (2017) 1–2; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.chembiol.2017.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chembiol.2017.01.001</a>">https://doi.org/10.1016/j.chembiol.2017.01.001</ext-link>
  20. R. B. Sykes and D. P. Bonner, Aztreonam: the first monobactam, <em>Am. J. Med.</em> <bold>78</bold>(2) (1985) 2–10; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0002-9343(85)90196-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0002-9343(85)90196-2</a>">https://doi.org/10.1016/0002-9343(85)90196-2</ext-link>
  21. F. Reck, A. Bermingham, J. Blais, V. Capka, T. Cariaga, A. Casarez, R. Colvin, C. R. Dean, A. Fekete, W. Gong, E. Growcott, H. Guo, A. K. Jones, C. Li, F. Li, X. Lin, M. Lindvall, S. Lopez, D. McKenney, L. Metzger, H. E. Moser, R. Prathapam, D. Rasper, P. Rudewicz, V. Sethuraman, X. Shen, J. Shaul, R. L. Simmons, K. Tashiro, D. Tang, M. Tjandra, N. Turner, T. Uehara, C. Vitt, S. Whitebread, A. Yifru, X. Zang and Q. Zhu, Optimization of novel monobactams with activity against carbapenem- -resistant <em>Enterobacteriaceae</em> – identification of LYS228, <em>Bioorg. Med. Chem. Lett.</em> <bold>28</bold>(4) (2018) 748–755; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bmcl.2018.01.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bmcl.2018.01.006</a>">https://doi.org/10.1016/j.bmcl.2018.01.006</ext-link>
  22. Z. Fei, Q. Wu, W. Gong, P. Fu, C. Li, X. Wang, Y. Han, B. Li, L. Li, B. Wu, Y. Zhao, J. Li, W. Zhu, W. Qiu, J. Guo, J. Zhou, Y. Li, M. Villa and C. Ming Cheung, Process development for the synthesis of a monobactam antibiotic—LYS228, <em>Org. Process Res. Dev.</em> <bold>24</bold>(3) (2020) 363–370; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.oprd.9b00330" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.oprd.9b00330</a>">https://doi.org/10.1021/acs.oprd.9b00330</ext-link>
  23. J. Blais, S. Lopez, C. Li, A. Ruzin, S. Ranjitkar, C. R. Dean, J. A. Leeds, A. Casarez, R. L. Simmons and F. Reck, <em>In vitro</em> activity of LYS228, a novel monobactam antibiotic, against multidrug-resistant <em>Enterobacteriaceae</em>, <em>Antimicrob. Agents Chemother.</em> <bold>62</bold>(10) (2018) e00552-18 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/AAC.00552-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.00552-18</a>">https://doi.org/10.1128/AAC.00552-18</ext-link>
  24. K. Grabrijan, N. Strašek and S. Gobec, Monocyclic beta–lactams for therapeutic uses: a patent overview (2010–2020), <em>Expert Opin. Ther. Pat.</em> <bold>31</bold>(3) (2020) 247–266; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/13543776.2021.1865919" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/13543776.2021.1865919</a>">https://doi.org/10.1080/13543776.2021.1865919</ext-link>
  25. L. Decuyper, S. Deketelaere, L. Vanparys, M. Jukič, I. Sosič, E. Sauvage, A. M. Amoroso, O. Verlaine, B. Joris, S. Gobec and M. D’hooghe, In silico design and enantioselective synthesis of functionalized monocyclic 3-amino-1-carboxymethyl-β-lactams as inhibitors of penicillin-binding proteins of resistant bacteria, <em>Chem. Eur. J.</em> <bold>24</bold>(57) (2018) 15254–15266; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/chem.201801868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/chem.201801868</a>">https://doi.org/10.1002/chem.201801868</ext-link>
  26. M. F. Brown, M. J. Mitton-Fry, J. T. Arcari, R. Barham, J. Casavant, B. S. Gerstenberger, S. Han, J. R. Hardink, T. M. Harris, T. Hoang, M. D. Huband, M. S. Lall, M. M. Lemmon, C. Li, J. Lin, S. P. Mc-Curdy, E. McElroy, C. McPherson, E. S. Marr, J. P. Mueller, L. Mullins, A. A. Nikitenko, M. C. Noe, J. Penzien, M. S. Plummer, B. P. Schuff, V. Shanmugasundaram, J. T. Starr, J. Sun, A. Tomaras, J. A. Young and R. P. Zaniewski, Pyridone-conjugated monobactam antibiotics with Gram-negative activity, <em>J. Med. Chem.</em> <bold>56</bold>(13) (2013) 5541–5552; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jm400560z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jm400560z</a>">https://doi.org/10.1021/jm400560z</ext-link>
  27. Z. W. Li, X. Lu, Y. X. Wang, X. X. Hu, H. G. Fu, L. M. Gao, X. F. You, S. Tang and D. Q. Song, Synthesis and antibacterial evaluation against resistant Gram-negative bacteria of monobactams bearing various substituents on oxime residue, <em>Bioorg. Chem.</em> <bold>94</bold> (2020) Article ID 103487 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bioorg.2019.103487" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bioorg.2019.103487</a>">https://doi.org/10.1016/j.bioorg.2019.103487</ext-link>
  28. L. Tan, Y. Tao, T. Wang, F. Zou, S. Zhang, Q. Kou, A. Niu, Q. Chen, W. Chu, X. Chen, H. Wang and Y. Yang, Discovery of novel pyridone-conjugated monosulfactams as potent and broad-spectrum antibiotics for multidrug-resistant Gram-negative infections, <em>J. Med. Chem.</em> <bold>60</bold>(7) (2017) 2669–2684; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.jmedchem.6b01261" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.jmedchem.6b01261</a>">https://doi.org/10.1021/acs.jmedchem.6b01261</ext-link>
  29. Q. Kou, T. Wang, F. Zou, S. Zhang, Q. Chen and Y. Yang, Design, synthesis and biological evaluation of C(4) substituted monobactams as antibacterial agents against multidrug-resistant Gram--negative bacteria, <em>Eur. J. Med. Chem.</em> <bold>151</bold> (2018) 98–109; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejmech.2018.03.058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejmech.2018.03.058</a>">https://doi.org/10.1016/j.ejmech.2018.03.058</ext-link>
  30. G. Patriarca, D. Schiavino, C. Lombardo, G. Altomonte, M. Decinti, A. Buonomo and E. Nucera, Tolerability of aztreonam in patients with IgE-mediated hypersensitivity to beta-lactams, <em>Int. J. Immunopathol. Pharmacol.</em> <bold>21</bold>(2) (2008) 375–379; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/039463200802100215" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/039463200802100215</a>">https://doi.org/10.1177/039463200802100215</ext-link>
  31. W. C. Reygaert, An overview of the antimicrobial resistance mechanisms of bacteria, <em>AIMS Microbiol.</em> <bold>4</bold>(3) (2018) 482–501; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3934/microbiol.2018.3.482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3934/microbiol.2018.3.482</a>">https://doi.org/10.3934/microbiol.2018.3.482</ext-link>
  32. B. R. da Cunha, L. P. Fonseca and C. R. C. Calado, Antibiotic discovery: where have we come from, where do we go? <em>Antibiotics</em> <bold>8</bold>(2) (2019) Article ID 45 (21 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/antibiotics8020045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics8020045</a>">https://doi.org/10.3390/antibiotics8020045</ext-link>
  33. R. Tommasi, D. G. Brown, G. K. Walkup, J. L. Manchester and A. A. Miller, ESKAPEing the labyrinth of antibacterial discovery, <em>Nat. Rev. Drug Discov.</em> <bold>14</bold> (2015) 529–542; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nrd4572" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrd4572</a>">https://doi.org/10.1038/nrd4572</ext-link>
  34. M. Lakemeyer, W. Zhao, F. A. Mandl, P. Hammann and S. A. Sieber, Thinking outside the box— novel antibacterials to tackle the resistance crisis, <em>Angew. Chem., Int. Ed.</em> <bold>57</bold>(44) (2018) 14440–14475; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/anie.201804971" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/anie.201804971</a>">https://doi.org/10.1002/anie.201804971</ext-link>
  35. World Health Organization, <em>2021 AWaRe Classification</em>, WHO, Geneva, September 30, 2021; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.who.int/publications-detail-redirect/2021-aware-classification;">https://www.who.int/publications-detail-redirect/2021-aware-classification;</ext-link> last access October 22, 2022
  36. M. S. Butler, V. Gigante, H. Sati, S. Paulin, L. Al-Sulaiman, J. H. Rex, P. Fernandes, C. A. Arias, M. Paul, G. E. Thwaites, L. Czaplewski, R. A. Alm, C. Lienhardt, M. Spigelman, L. L. Silver, N. Ohmagari, R. Kozlov, S. Harbarth and P. Beyer, Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed, <em>Antimicrob. Agents Chemother.</em> <bold>66</bold>(3) (2022) e01991-21 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/aac.01991-21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.01991-21</a>">https://doi.org/10.1128/aac.01991-21</ext-link>
  37. S. M. Bhavnani, K. M. Krause and P. G. Ambrose, A broken antibiotic market: review of strategies to incentivize drug development, <em>Open Forum Infect. Dis.</em> <bold>7</bold>(7) (2020) ofaa083 (6 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/ofid/ofaa083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/ofid/ofaa083</a>">https://doi.org/10.1093/ofid/ofaa083</ext-link>
  38. P. Macheboeuf, A. M. Di Guilmi, V. Job, T. Vernet, O. Dideberg and A. Dessen, Active site restructuring regulates ligand recognition in class A penicillin-binding proteins, <em>Proc. Natl. Acad. Sci. USA</em> <bold>102</bold>(3) (2005) 577–582; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1073/pnas.0407186102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.0407186102</a>">https://doi.org/10.1073/pnas.0407186102</ext-link>
  39. A. M. di Guilmi, A. Dessen, O. Dideberg and T. Vernet, Functional characterization of penicillin-binding protein 1b from <em>Streptococcus pneumoniae</em>, <em>J. Bacteriol.</em> <bold>185</bold>(5) (2003) 1650–1658; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/JB.185.5.1650-1658.2003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/JB.185.5.1650-1658.2003</a>">https://doi.org/10.1128/JB.185.5.1650-1658.2003</ext-link>
  40. C. Contreras-Martel, A. Amoroso, E. C. Y. Woon, A. Zervosen, S. Inglis, A. Martins, O. Verlaine, A. M. Rydzik, V. Job, A. Luxen, B. Joris, C. J. Schofield and A. Dessen, Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in <em>Staphylococcus aureus</em> (MRSA), <em>ACS Chem. Biol.</em> <bold>6</bold>(9) (2011) 943–951; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/cb2001846" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/cb2001846</a>">https://doi.org/10.1021/cb2001846</ext-link>
  41. H. Newman, A. Krajnc, D. Bellini, C. J. Eyermann, G. A. Boyle, N. G. Paterson, K. E. McAuley, R. Lesniak, M. Gangar, F. von Delft, J. Brem, K. Chibale, C. J. Schofield and C. G. Dowson, High-throughput crystallography reveals boron-containing inhibitors of a penicillin-binding protein with di- and tri-covalent binding modes, <em>J. Med. Chem.</em> <bold>64</bold>(15) (2021) 11379–11394; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.jmedchem.1c00717" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.jmedchem.1c00717</a>">https://doi.org/10.1021/acs.jmedchem.1c00717</ext-link>
  42. A. Meden, D. Knez, N. Malikowska-Racia, X. Brazzolotto, F. Nachon, J. Svete, K. Sałat, U. Grošelj and S. Gobec, Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors, <em>Eur. J. Med. Chem.</em> <bold>208</bold> (2020) Article ID 112766 (21 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/0.1016/j.ejmech.2020.112766">https://doi.org/0.1016/j.ejmech.2020.112766</ext-link>
  43. M. Proj, M. Hrast, D. Knez, K. Bozovičar, K. Grabrijan, A. Meden, S. Gobec and R. Frlan, Fragmentsized thiazoles in fragment-based drug discovery campaigns: friend or foe?, <em>ACS Med. Chem. Lett.</em> <bold>13</bold>(12) (2022) 1905–1910; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsmedchemlett.2c00429" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsmedchemlett.2c00429</a>">https://doi.org/10.1021/acsmedchemlett.2c00429</ext-link>
  44. Clinical and Laboratory Standards Institute, <em>M07 – Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobi</em>call<em>y (11th ed</em>.), CLSI, Wayne (PA) USA, January 2018; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://clsi.org/media/1928/m07ed11_sample.pdf;">https://clsi.org/media/1928/m07ed11_sample.pdf;</ext-link> last access March 17, 2022
  45. European Committee on Antimicrobial Susceptibility Testing, <em>EUCAST: Clinical Breakpoints and Dosing of Antibiotics,</em> EUCAST (v 12.0, January 2022); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.eucast.org/clinical_breakpoints;">https://www.eucast.org/clinical_breakpoints;</ext-link> last access March 17, 2022
  46. M. Proj, D. Knez, I. Sosič and S. Gobec, Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds, <em>Drug Discov. Today</em> <bold>27</bold>(6) (2022) 1733–1742; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.drudis.2022.03.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.drudis.2022.03.008</a>">https://doi.org/10.1016/j.drudis.2022.03.008</ext-link>
  47. E. Resnick, A. Bradley, J. Gan, A. Douangamath, T. Krojer, R. Sethi, P. P. Geurink, A. Aimon, G. Amitai, D. Bellini, J. Bennett, M. Fairhead, O. Fedorov, R. Gabizon, J. Gan, J. Guo, A. Plotnikov, N. Reznik, G. F. Ruda, L. Díaz-Sáez, V. M. Straub, T. Szommer, S. Velupillai, D. Zaidman, Y. Zhang, A. R. Coker, C. G. Dowson, H. M. Barr, C. Wang, K. V. M. Huber, P. E. Brennan, H. Ovaa, F. von Delft and N. London, Rapid covalent-probe discovery by electrophile-fragment screening, <em>J. Am. Chem. Soc.</em> <bold>141</bold>(22) (2019) 8951–8968; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jacs.9b02822" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jacs.9b02822</a>">https://doi.org/10.1021/jacs.9b02822</ext-link>
  48. K. Grabrijan, N. Strašek and S. Gobec, Synthesis of 3-amino-4-substituted monocyclic ß-lactams – Important structural motifs in medicinal chemistry, <em>Int. J. Mol. Sci.</em> <bold>23</bold>(1) (2022) Article ID 360 (26 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms23010360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms23010360</a>">https://doi.org/10.3390/ijms23010360</ext-link>
  49. S. Carosso, R. Liu, P. A. Miller, S. J. Hecker, T. Glinka and M. J. Miller, Methodology for monobactam diversification: Syntheses and studies of 4-thiomethyl substituted β-lactams with activity against Gram-negative bacteria, including carbapenemase producing <em>Acinetobacter baumannii</em>, <em>J. Med. Chem.</em> <bold>60</bold>(21) (2017) 8933–8944; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.jmedchem.7b01164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.jmedchem.7b01164</a>">https://doi.org/10.1021/acs.jmedchem.7b01164</ext-link>
  50. T. Lupia, C. Pallotto, S. Corcione, L. Boglione and F. G. De Rosa, Ceftobiprole perspective: Current and potential future indications, <em>Antibiotics</em> <bold>10</bold>(2) (2021) Article ID 170 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/antibiotics10020170" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics10020170</a>">https://doi.org/10.3390/antibiotics10020170</ext-link>
  51. A. B. Shapiro, R. F. Gu, N. Gao, S. Livchak and J. Thresher, Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3, <em>Anal. Biochem.</em> <bold>439</bold>(1) (2013) 37–43; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ab.2013.04.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ab.2013.04.009</a>">https://doi.org/10.1016/j.ab.2013.04.009</ext-link>
  52. J. S. Martin, C. J. MacKenzie, D. Fletcher and I. H. Gilbert, Characterising covalent warhead reactivity, <em>Bioorg. Med. Chem.</em> <bold>27</bold>(10) (2019) 2066–2074; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bmc.2019.04.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bmc.2019.04.002</a>">https://doi.org/10.1016/j.bmc.2019.04.002</ext-link>
  53. A. Urbach, G. Dive, B. Tinant, V. Duval and J. Marchand-Brynaert, Large ring 1,3-bridged 2-azetidinones: Experimental and theoretical studies, <em>Eur. J. Med. Chem.</em> <bold>44</bold>(5) (2009) 2071–2080; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejmech.2008.10.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejmech.2008.10.016</a>">https://doi.org/10.1016/j.ejmech.2008.10.016</ext-link>
  54. A. H. Delcour, Outer membrane permeability and antibiotic resistance, <em>Biochim. Biophys. Acta -Proteins Proteomics</em> <bold>1794</bold>(5) (2009) 808–816; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bbapap.2008.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbapap.2008.11.005</a>">https://doi.org/10.1016/j.bbapap.2008.11.005</ext-link>
  55. H. Nikaido, Molecular basis of bacterial outer membrane permeability revisited, <em>Microbiol. Mol. Biol. Rev</em>. <bold>67</bold>(4) (2003) 593–656; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/MMBR.67.4.593-656.2003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/MMBR.67.4.593-656.2003</a>">https://doi.org/10.1128/MMBR.67.4.593-656.2003</ext-link>
  56. M. Proj, N. Strašek, S. Pajk, D. Knez and I. Sosič, Tunable heteroaromatic nitriles for selective bioorthogonal click reaction with cysteine, <em>Bioconjugate Chem.</em> <bold>34</bold>(7) (2023) 1271–1281, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.bioconjchem.3c00163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.bioconjchem.3c00163</a>">https://doi.org/10.1021/acs.bioconjchem.3c00163</ext-link>
DOI: https://doi.org/10.2478/acph-2024-0024 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 423 - 440
Accepted on: Jun 3, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2024 Katarina Grabrijan, Nika Strašek Benedik, Alen Krajnc, Krištof Bozovičar, Damijan Knez, Matic Proj, Irena Zdovc, Izidor Sosič, Carlos Contreras-Martel, Andréa Dessen, Martina Hrast Rambaher, Stanislav Gobec, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.