References
- R. Raynes, L. C. D. Pomatto and K. J. A. Davies, Degradation of oxidized proteins by the protea-some: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways, Mol. Aspects Med. 50 (2016) 41–55; https://doi.org/10.1016/j.mam.2016.05.001
- I. Sahu and M. H. Glickman, Proteasome in action: substrate degradation by the 26S proteasome, Biochem. Soc. Trans. 49(2) (2021) 629–644; https://doi.org/10.1042/BST20200382
- D. Voges, P. Zwickl and W. Baumeister, The 26S proteasome: a molecular machine designed for controlled proteolysis, Annu. Rev. Biochem. 68 (1999) 1015–1068; https://doi.org/10.1146/annurev.biochem.68.1.1015
- G. A. Collins and A. L. Goldberg, The logic of the 26S proteasome, Cell 169 (2017) 792–806; https://doi.org/10.1016/j.cell.2017.04.023
- J. A. M. Bard, E. A. Goodall, E. R. Greene, E. Jonsson, K. C. Dong and A. Martin, Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87 (2018) 697–724; https://doi.org/10.1146/annurev-biochem-062917-011931
- F. Türker, E. K. Cook and S. S. Margolis, The proteasome and its role in the nervous system, Cell Chem. Biol. 28 (2021) 903–917; https://doi.org/10.1016/j.chembiol.2021.04.003
- S. A. Bhat, Z. Vasi, R. Adhikari, A. Gudur, A. Ali, L. Jiang, R. Ferguson, D. Liang and S. Kuchay, Ubiquitin proteasome system in immune regulation and therapeutics, Curr. Opin. Pharmacol. 67 (2022) Article ID 102310; https://doi.org/10.1016/j.coph.2022.102310
- L. A. Passmore and D. Barford, Getting into position: the catalytic mechanisms of protein ubiquitylation, Biochem. J. 379(3) (2004) 513–525; https://doi.org/10.1042/BJ20040198
- S. H. Lecker, A. L. Goldberg and W. E. Mitch, Protein degradation by the ubiquitin–proteasome pathway in normal and disease states, J. Am. Soc. Nephrol. 17(7) (2006) 1807–1819; https://doi.org/10.1681/ASN.2006010083
- G. Kleiger and T. Mayor, Perilous journey: a tour of the ubiquitin-proteasome system, Trends Cell Biol. 24(6) (2014) 352–359; https://doi.org/10.1016/j.tcb.2013.12.003
- J. Adams, The proteasome: structure, function, and role in the cell, Cancer Treat. Rev. 29 (2003) 3–9; https://doi.org/10.1016/S0305-7372(03)00081-1
- M. Groettrup, C. J. Kirk and M. Basler, Proteasomes in immune cells: more than peptide producers?, Nat. Rev. Immunol. 10 (2010) 73–78; https://doi.org/10.1038/nri2687
- L. Bedford, S. Paine, P. W. Sheppard, R. J. Mayer and J. Roelofs, Assembly, structure, and function of the 26S proteasome, Trends Cell Biol. 20(7) (2010) 391–401; https://doi.org/10.1016/j.tcb.2010.03.007
- L. Budenholzer, C. L. Cheng, Y. Li and M. Hochstrasser, Proteasome structure and assembly, J. Mol. Biol. 429(22) (2017) 3500–3524; https://doi.org/10.1016/j.jmb.2017.05.027
- T. A. Thibaudeau and D. M. Smith, A practical review of proteasome pharmacology, Pharmacol. Rev. 71(2) (2019) 170–197; https://doi.org/10.1124/pr.117.015370
- E. Ogorevc, E. S. Schiffrer, I. Sosič and S. Gobec, A patent review of immunoproteasome inhibitors, Expert Opin. Ther. Pat. 28(7) (2018) 517–540; https://doi.org/10.1080/13543776.2018.1484904
- M. Groettrup, S. Khan, K. Schwarz and G. Schmidtke, Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why?, Biochimie 83(3–4) (2001) 367–372; https://doi.org/10.1016/S0300-9084(01)01251-2
- G. Kaur and S. Batra, Emerging role of immunoproteasomes in pathophysiology, Immunol. Cell Biol. 94(9) (2016) 812–820; https://doi.org/10.1038/icb.2016.50
- A. Mani and E. P. Gelmann, The ubiquitin-proteasome pathway and its role in cancer, J. Clin. Oncol. 23(21) (2005) 4776–4789; https://doi.org/10.1200/JCO.2005.05.081
- D. J. Kuhn and R. Z. Orlowski, The immunoproteasome as a target in hematologic malignancies, Semin. Hematol. 49(3) (2012) 258–262; https://doi.org/10.1053/j.seminhematol.2012.04.003
- M. Schmidt and D. Finley, Regulation of proteasome activity in health and disease, Biochim. Biophys. Acta BBA – Mol. Cell Res. 1843(1) (2014) 13–25; https://doi.org/10.1016/j.bbamcr.2013.08.012
- J. E. Park, Z. Miller, Y. Jun, W. Lee and K. B. Kim, Next-generation proteasome inhibitors for cancer therapy, Transl. Res. 198 (2018) 1–16; https://doi.org/10.1016/j.trsl.2018.03.002
- V. T. de M. Hungria, E. de Q. Crusoé, R. I. Bittencourt, A. Maiolino, R. J. P. Magalhães, J. do N. Sobrinho, J. V. Pinto, R. C. Fortes, E. de S. Moreira and P. Y. Tanaka, New proteasome inhibitors in the treatment of multiple myeloma, Hematol. Transfus. Cell Ther. 41(1) (2019) 76–83; https://doi.org/10.1016/j.htct.2018.07.003
- E. M. Huber and M. Groll, Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development, Angew. Chem. Int. Ed. 51(35) (2012) 8708–8720; https://doi.org/10.1002/anie.201201616
- A. F. Kisselev and M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation, Curr. Opin. Chem. Biol. 23 (2014) 16–22; https://doi.org/10.1016/j.cbpa.2014.08.012
- P. M. Cromm and C. M. Crews, The proteasome in modern drug discovery: second life of a highly valuable drug target, ACS Cent. Sci. 3 (2017) 830–838; https://doi.org/10.1021/acscentsci.7b00252
- B. L. Zerfas, M. E. Maresh and D. J. Trader, The immunoproteasome: an emerging target in cancer and autoimmune and neurological disorders, J. Med. Chem. 63(5) (2020) 1841–1858; https://doi.org/10.1021/acs.jmedchem.9b01226
- R. Ettari, M. Zappalà, S. Grasso, C. Musolino, V. Innao and A. Allegra, Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma, Pharmacol. Ther. 182 (2018) 176–192; https://doi.org/10.1016/j.pharmthera.2017.09.001
- D. J. Sherman and J. Li, Proteasome inhibitors: harnessing proteostasis to combat disease, Molecules 25(3) (2020) Article ID 671 (30 pages); https://doi.org/10.3390/molecules25030671
- E. M. Huber and M. Groll, A nut for every bolt: subunit-selective inhibitors of the immunoproteasome and their therapeutic potential, Cells 10(8) (2021) Article ID 1929 (21 pages); https://doi.org/10.3390/cells10081929
- G. R. Tundo, P. Cascio, D. Milardi, A. M. Santoro, G. Graziani, P. M. Lacal, A. Bocedi, F. Oddone, M. Parravano, A. Coletta, M. Coletta and D. Sbardella, Targeting immunoproteasome in neurode-generation: A glance to the future, Pharmacol. Ther. 241 (2023) Article ID 108329; https://doi.org/10.1016/j.pharmthera.2022.108329
- I. Sosič, M. Gobec, B. Brus, D. Knez, M. Živec, J. Konc, S. Lešnik, M. Ogrizek, A. Obreza, D. Žigon, D. Janežič, I. Mlinarič-Raščan and S. Gobec, Nonpeptidic selective inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome, Angew. Chem. Int. Ed. 55(19) (2016) 5745–5748; https://doi.org/10.1002/anie.201600190
- E. S. Schiffrer, I. Sosič, A. Šterman, J. Mravljak, I. M. Raščan, S. Gobec and M. Gobec, A focused structure-activity relationship study of psoralen-based immunoproteasome inhibitors, MedChem-Comm 10 (2019) 1958–1965; https://doi.org/10.1039/C9MD00365G
- E. S. Schiffrer, M. Proj, M. Gobec, L. Rejc, A. Šterman, J. Mravljak, S. Gobec and I. Sosič, Synthesis and biochemical evaluation of warhead-decorated psoralens as (immuno)proteasome inhibitors, Molecules 26(2) (2021) Article ID 356 (18 pages); https://doi.org/10.3390/molecules26020356
- A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M. Davies, F. A. Krüger, Y. Light, L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos and J. P. Overington, The ChEMBL bioactivity database: an update, Nucleic Acids Res. 42 (2014) D1083–D1090; https://doi.org/10.1093/nar/gkt1031
- L.-H. Wang, A. Evers, P. Monecke and T. Naumann, Ligand based lead generation – considering chemical accessibility in rescaffolding approaches via BROOD, J. Cheminf. 4(Suppl. 1) (2012) Article ID O20 (1 page); https://doi.org/10.1186/1758-2946-4-S1-O20
- B. J. Neves, R. V. Bueno, R. C. Braga and C. H. Andrade, Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches, Bioorg. Med. Chem. Lett. 23(8) (2013) 2436–2441; https://doi.org/10.1016/j.bmcl.2013.02.006
- A. Obreza, K. Grabrijan, S. Kadić, F. J. de L. Garrido, I. Sosič, S. Gobec and M. Jukič, Chlorocarbonylsulfenyl chloride cyclizations towards piperidin-3-yl-oxathiazol-2-ones as potential covalent inhibitors of threonine proteases, Acta Chim. Slov. 64(4) (2017) 771–781; https://doi.org/10.17344/acsi.2017.3883
- A. P. Hill and R. J. Young, Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity, Drug Discov. Today 15 (15–16) (2010) 648–655; https://doi.org/10.1016/j.drudis.2010.05.016
- E. M. Huber, M. Basler, R. Schwab, W. Heinemeyer, C. J. Kirk, M. Groettrup and M. Groll, Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity, Cell 148(4) (2012) 727–738; https://doi.org/10.1016/j.cell.2011.12.030
- C. Dubiella, H. Cui, M. Gersch, A. J. Brouwer, S. A. Sieber, A. Krüger, R. M. J. Liskamp and M. Groll, selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site, Angew. Chem. Int. Ed. 53(44) (2014) 11969–11973; https://doi.org/10.1002/anie.201406964
- L. Kollár, M. Gobec, B. Szilágyi, M. Proj, D. Knez, P. Ábrányi-Balogh, L. Petri, T. Imre, D. Bajusz, G. G. Ferenczy, S. Gobec, G. M. Keserű and I. Sosič, Discovery of selective fragment-sized immunoproteasome inhibitors, Eur. J. Med. Chem. 219 (2021) Article ID 113455; https://doi.org/10.1016/j.ejmech.2021.113455
- L. Kollár, M. Gobec, M. Proj, L. Smrdel, D. Knez, T. Imre, Á. Gömöry, L. Petri, P. Ábrányi-Balogh, D. Csányi, G. G. Ferenczy, S. Gobec, I. Sosič and G. M. Keserű, fragment-sized and bidentate (immuno)proteasome inhibitors derived from cysteine and threonine targeting warheads, Cells 10(12) (2021) Article ID 3431 (19 pages); https://doi.org/10.3390/cells10123431
- R. Ettari, C. Cerchia, S. Maiorana, M. Guccione, E. Novellino, A. Bitto, S. Grasso, A. Lavecchia and M. Zappalà, development of novel amides as noncovalent inhibitors of immunoproteasomes, ChemMedChem 14(8) (2019) 842–852; https://doi.org/10.1002/cmdc.201900028