Have a personal or library account? Click to login
Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome Cover

Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome

Open Access
|Sep 2023

References

  1. R. Raynes, L. C. D. Pomatto and K. J. A. Davies, Degradation of oxidized proteins by the protea-some: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways, Mol. Aspects Med. 50 (2016) 41–55; https://doi.org/10.1016/j.mam.2016.05.001
  2. I. Sahu and M. H. Glickman, Proteasome in action: substrate degradation by the 26S proteasome, Biochem. Soc. Trans. 49(2) (2021) 629–644; https://doi.org/10.1042/BST20200382
  3. D. Voges, P. Zwickl and W. Baumeister, The 26S proteasome: a molecular machine designed for controlled proteolysis, Annu. Rev. Biochem. 68 (1999) 1015–1068; https://doi.org/10.1146/annurev.biochem.68.1.1015
  4. G. A. Collins and A. L. Goldberg, The logic of the 26S proteasome, Cell 169 (2017) 792–806; https://doi.org/10.1016/j.cell.2017.04.023
  5. J. A. M. Bard, E. A. Goodall, E. R. Greene, E. Jonsson, K. C. Dong and A. Martin, Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87 (2018) 697–724; https://doi.org/10.1146/annurev-biochem-062917-011931
  6. F. Türker, E. K. Cook and S. S. Margolis, The proteasome and its role in the nervous system, Cell Chem. Biol. 28 (2021) 903–917; https://doi.org/10.1016/j.chembiol.2021.04.003
  7. S. A. Bhat, Z. Vasi, R. Adhikari, A. Gudur, A. Ali, L. Jiang, R. Ferguson, D. Liang and S. Kuchay, Ubiquitin proteasome system in immune regulation and therapeutics, Curr. Opin. Pharmacol. 67 (2022) Article ID 102310; https://doi.org/10.1016/j.coph.2022.102310
  8. L. A. Passmore and D. Barford, Getting into position: the catalytic mechanisms of protein ubiquitylation, Biochem. J. 379(3) (2004) 513–525; https://doi.org/10.1042/BJ20040198
  9. S. H. Lecker, A. L. Goldberg and W. E. Mitch, Protein degradation by the ubiquitin–proteasome pathway in normal and disease states, J. Am. Soc. Nephrol. 17(7) (2006) 1807–1819; https://doi.org/10.1681/ASN.2006010083
  10. G. Kleiger and T. Mayor, Perilous journey: a tour of the ubiquitin-proteasome system, Trends Cell Biol. 24(6) (2014) 352–359; https://doi.org/10.1016/j.tcb.2013.12.003
  11. J. Adams, The proteasome: structure, function, and role in the cell, Cancer Treat. Rev. 29 (2003) 3–9; https://doi.org/10.1016/S0305-7372(03)00081-1
  12. M. Groettrup, C. J. Kirk and M. Basler, Proteasomes in immune cells: more than peptide producers?, Nat. Rev. Immunol. 10 (2010) 73–78; https://doi.org/10.1038/nri2687
  13. L. Bedford, S. Paine, P. W. Sheppard, R. J. Mayer and J. Roelofs, Assembly, structure, and function of the 26S proteasome, Trends Cell Biol. 20(7) (2010) 391–401; https://doi.org/10.1016/j.tcb.2010.03.007
  14. L. Budenholzer, C. L. Cheng, Y. Li and M. Hochstrasser, Proteasome structure and assembly, J. Mol. Biol. 429(22) (2017) 3500–3524; https://doi.org/10.1016/j.jmb.2017.05.027
  15. T. A. Thibaudeau and D. M. Smith, A practical review of proteasome pharmacology, Pharmacol. Rev. 71(2) (2019) 170–197; https://doi.org/10.1124/pr.117.015370
  16. E. Ogorevc, E. S. Schiffrer, I. Sosič and S. Gobec, A patent review of immunoproteasome inhibitors, Expert Opin. Ther. Pat. 28(7) (2018) 517–540; https://doi.org/10.1080/13543776.2018.1484904
  17. M. Groettrup, S. Khan, K. Schwarz and G. Schmidtke, Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why?, Biochimie 83(3–4) (2001) 367–372; https://doi.org/10.1016/S0300-9084(01)01251-2
  18. G. Kaur and S. Batra, Emerging role of immunoproteasomes in pathophysiology, Immunol. Cell Biol. 94(9) (2016) 812–820; https://doi.org/10.1038/icb.2016.50
  19. A. Mani and E. P. Gelmann, The ubiquitin-proteasome pathway and its role in cancer, J. Clin. Oncol. 23(21) (2005) 4776–4789; https://doi.org/10.1200/JCO.2005.05.081
  20. D. J. Kuhn and R. Z. Orlowski, The immunoproteasome as a target in hematologic malignancies, Semin. Hematol. 49(3) (2012) 258–262; https://doi.org/10.1053/j.seminhematol.2012.04.003
  21. M. Schmidt and D. Finley, Regulation of proteasome activity in health and disease, Biochim. Biophys. Acta BBA – Mol. Cell Res. 1843(1) (2014) 13–25; https://doi.org/10.1016/j.bbamcr.2013.08.012
  22. J. E. Park, Z. Miller, Y. Jun, W. Lee and K. B. Kim, Next-generation proteasome inhibitors for cancer therapy, Transl. Res. 198 (2018) 1–16; https://doi.org/10.1016/j.trsl.2018.03.002
  23. V. T. de M. Hungria, E. de Q. Crusoé, R. I. Bittencourt, A. Maiolino, R. J. P. Magalhães, J. do N. Sobrinho, J. V. Pinto, R. C. Fortes, E. de S. Moreira and P. Y. Tanaka, New proteasome inhibitors in the treatment of multiple myeloma, Hematol. Transfus. Cell Ther. 41(1) (2019) 76–83; https://doi.org/10.1016/j.htct.2018.07.003
  24. E. M. Huber and M. Groll, Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development, Angew. Chem. Int. Ed. 51(35) (2012) 8708–8720; https://doi.org/10.1002/anie.201201616
  25. A. F. Kisselev and M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation, Curr. Opin. Chem. Biol. 23 (2014) 16–22; https://doi.org/10.1016/j.cbpa.2014.08.012
  26. P. M. Cromm and C. M. Crews, The proteasome in modern drug discovery: second life of a highly valuable drug target, ACS Cent. Sci. 3 (2017) 830–838; https://doi.org/10.1021/acscentsci.7b00252
  27. B. L. Zerfas, M. E. Maresh and D. J. Trader, The immunoproteasome: an emerging target in cancer and autoimmune and neurological disorders, J. Med. Chem. 63(5) (2020) 1841–1858; https://doi.org/10.1021/acs.jmedchem.9b01226
  28. R. Ettari, M. Zappalà, S. Grasso, C. Musolino, V. Innao and A. Allegra, Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma, Pharmacol. Ther. 182 (2018) 176–192; https://doi.org/10.1016/j.pharmthera.2017.09.001
  29. D. J. Sherman and J. Li, Proteasome inhibitors: harnessing proteostasis to combat disease, Molecules 25(3) (2020) Article ID 671 (30 pages); https://doi.org/10.3390/molecules25030671
  30. E. M. Huber and M. Groll, A nut for every bolt: subunit-selective inhibitors of the immunoproteasome and their therapeutic potential, Cells 10(8) (2021) Article ID 1929 (21 pages); https://doi.org/10.3390/cells10081929
  31. G. R. Tundo, P. Cascio, D. Milardi, A. M. Santoro, G. Graziani, P. M. Lacal, A. Bocedi, F. Oddone, M. Parravano, A. Coletta, M. Coletta and D. Sbardella, Targeting immunoproteasome in neurode-generation: A glance to the future, Pharmacol. Ther. 241 (2023) Article ID 108329; https://doi.org/10.1016/j.pharmthera.2022.108329
  32. I. Sosič, M. Gobec, B. Brus, D. Knez, M. Živec, J. Konc, S. Lešnik, M. Ogrizek, A. Obreza, D. Žigon, D. Janežič, I. Mlinarič-Raščan and S. Gobec, Nonpeptidic selective inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome, Angew. Chem. Int. Ed. 55(19) (2016) 5745–5748; https://doi.org/10.1002/anie.201600190
  33. E. S. Schiffrer, I. Sosič, A. Šterman, J. Mravljak, I. M. Raščan, S. Gobec and M. Gobec, A focused structure-activity relationship study of psoralen-based immunoproteasome inhibitors, MedChem-Comm 10 (2019) 1958–1965; https://doi.org/10.1039/C9MD00365G
  34. E. S. Schiffrer, M. Proj, M. Gobec, L. Rejc, A. Šterman, J. Mravljak, S. Gobec and I. Sosič, Synthesis and biochemical evaluation of warhead-decorated psoralens as (immuno)proteasome inhibitors, Molecules 26(2) (2021) Article ID 356 (18 pages); https://doi.org/10.3390/molecules26020356
  35. A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M. Davies, F. A. Krüger, Y. Light, L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos and J. P. Overington, The ChEMBL bioactivity database: an update, Nucleic Acids Res. 42 (2014) D1083–D1090; https://doi.org/10.1093/nar/gkt1031
  36. L.-H. Wang, A. Evers, P. Monecke and T. Naumann, Ligand based lead generation – considering chemical accessibility in rescaffolding approaches via BROOD, J. Cheminf. 4(Suppl. 1) (2012) Article ID O20 (1 page); https://doi.org/10.1186/1758-2946-4-S1-O20
  37. B. J. Neves, R. V. Bueno, R. C. Braga and C. H. Andrade, Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches, Bioorg. Med. Chem. Lett. 23(8) (2013) 2436–2441; https://doi.org/10.1016/j.bmcl.2013.02.006
  38. A. Obreza, K. Grabrijan, S. Kadić, F. J. de L. Garrido, I. Sosič, S. Gobec and M. Jukič, Chlorocarbonylsulfenyl chloride cyclizations towards piperidin-3-yl-oxathiazol-2-ones as potential covalent inhibitors of threonine proteases, Acta Chim. Slov. 64(4) (2017) 771–781; https://doi.org/10.17344/acsi.2017.3883
  39. A. P. Hill and R. J. Young, Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity, Drug Discov. Today 15 (15–16) (2010) 648–655; https://doi.org/10.1016/j.drudis.2010.05.016
  40. E. M. Huber, M. Basler, R. Schwab, W. Heinemeyer, C. J. Kirk, M. Groettrup and M. Groll, Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity, Cell 148(4) (2012) 727–738; https://doi.org/10.1016/j.cell.2011.12.030
  41. C. Dubiella, H. Cui, M. Gersch, A. J. Brouwer, S. A. Sieber, A. Krüger, R. M. J. Liskamp and M. Groll, selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site, Angew. Chem. Int. Ed. 53(44) (2014) 11969–11973; https://doi.org/10.1002/anie.201406964
  42. L. Kollár, M. Gobec, B. Szilágyi, M. Proj, D. Knez, P. Ábrányi-Balogh, L. Petri, T. Imre, D. Bajusz, G. G. Ferenczy, S. Gobec, G. M. Keserű and I. Sosič, Discovery of selective fragment-sized immunoproteasome inhibitors, Eur. J. Med. Chem. 219 (2021) Article ID 113455; https://doi.org/10.1016/j.ejmech.2021.113455
  43. L. Kollár, M. Gobec, M. Proj, L. Smrdel, D. Knez, T. Imre, Á. Gömöry, L. Petri, P. Ábrányi-Balogh, D. Csányi, G. G. Ferenczy, S. Gobec, I. Sosič and G. M. Keserű, fragment-sized and bidentate (immuno)proteasome inhibitors derived from cysteine and threonine targeting warheads, Cells 10(12) (2021) Article ID 3431 (19 pages); https://doi.org/10.3390/cells10123431
  44. R. Ettari, C. Cerchia, S. Maiorana, M. Guccione, E. Novellino, A. Bitto, S. Grasso, A. Lavecchia and M. Zappalà, development of novel amides as noncovalent inhibitors of immunoproteasomes, ChemMedChem 14(8) (2019) 842–852; https://doi.org/10.1002/cmdc.201900028
DOI: https://doi.org/10.2478/acph-2023-0032 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 441 - 456
Accepted on: Jul 2, 2023
Published on: Sep 14, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Martina Gobec, Aleš Obreza, Marko Jukič, Ana Baumgartner, Nja Mihelčič, Špela Potočnik, Julija Virant, Irena Mlinarič, Raščan Stanislav, Gobec Izidor Sosič, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.