Have a personal or library account? Click to login
Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules Cover

Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules

Open Access
|Oct 2022

References

  1. 1. S. Ji, D. He, T. Wang, J. Han, Z. Li, Y. Du, J. Zou, M. Guo and D. Tang, Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interactionxreversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry, J. Pharm. Biomed. Anal. 146 (2017) 68–78; https://doi.org/10.1016/j.jpba.2017.07.057
  2. 2. S. Czigle, J. Tóth, N. Jedlinszki, E. Háznagy-Radnai, D. Csupor and D. Tekel’ová, Ginkgo biloba food supplements on the European market – adulteration patterns revealed by quality control of selected samples, Planta Med. 84 (2018) 475–482; https://doi.org/10.1055/a-0581-5203
  3. 3. L. T. Wang, X. H. Fan, Y. Jian, M. Z. Dong, Q. Yang, D. Meng and Y. J. Fu, A sensitive and selective multiple reaction monitoring mass spectrometry method for simultaneous quantification of flavonol glycoside, terpene lactones, and biflavonoids in Ginkgo biloba leaves, J. Pharm. Biomed. Anal. 170 (2019) 335–340; https://doi.org/10.1016/j.jpba.2019.03.058
  4. 4. E. Pereira, L. Barros and I. C. F. R. Ferreira, Chemical characterization of Ginkgo biloba L. and anti-oxidant properties of its extracts and dietary supplements, Ind. Crop Prod. 51 (2013) 244–248; https://doi.org/10.1016/j.indcrop.2013.09.011
  5. 5. L. Liu, Y. Wang, J. Zhang and S. Wang, Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals, J. Pharm. Biomed. Anal. 193 (2021) Article ID 113704; https://doi.org/10.1016/j.jpba.2020.113704
  6. 6. J. Ortega-Vidal, A. Ruiz-Riaguas, M. L. Fernández-de Córdova, P. Ortega-Barrales and E. J. Llorent-Martínez, Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion, Food Chem. 287 (2019) 258–264, https://doi.org/10.1016/j.foodchem.2019.02.101
  7. 7. E. Fernández-García, I. Carvajal-Lérida and A. Pérez-Gálvez, In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency, Nutr. Res. 29 (2009) 751–760; https://doi.org/10.1016/j.nutres.2009.09.016
  8. 8. J. M. Carbonell-Capella, M. Buniowska, F. J. Barba, M. J. Esteve and A. Frígola, Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 155–171; https://doi.org/10.1111/1541-4337.12049
  9. 9. S. Hilary, F. A. Tomás-Barberán, J. A. Martinez-Blazquez, J. Kizhakkayil, U. Souka, S. Al-Hammadi, H. Habib, W. Ibrahim and C. Platat, Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulatedin-vitro digestion/Caco-2 culture model, Food Chem. 311 (2020) Article ID 125969; https://doi.org/10.1016/j.food-chem.2019.125969
  10. 10. M. Schulz, F. C. Biluca, L. V. Gonzaga, G. da S. C. Borges, L. Vitali, G. A. Micke, J. S. de Gois, T. S. de Almeida, D. L. G. Borges, P. R. M. Miller, A. C. O. Costa and R. Fett, Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion, Food Chem. 228 (2017) 447–454; https://doi.org/10.1016/j.food-chem.2017.02.038
  11. 11. N. Jayawardena, M. I. Watawana and V. Y. Waisundara, Evaluation of the total antioxidant capa city, polyphenol contents and starch hydrolase inhibitory activity of ten edible plants in an in vitro model of digestion, Plant Food Hum. Nutr. 70 (2015) 71–76; https://doi.org/10.1007/s11130-014-0463-4
  12. 12. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie and A. Brodkorb, A standardized static in vitro digestion method suitable for food-an international consensus, Food Funct. 5 (2014) 1113–1124; https://doi.org/10.1039/c3fo60702j
  13. 13. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, In vitro models for studying secondary plant metabolite digestion and bioaccessibility, Compr. Rev. Food Sci Food Saf. 13 (2014) 413–436; https://doi.org/10.1111/1541-4337.12081
  14. 14. X. Lin, Z. Chen, Y. Zhang, W. Luo, H. Tang, B. Deng, J. Deng and B. Li, Comparative characterisation of green tea and black tea cream: Physicochemical and phytochemical nature, Food Chem. 173 (2015) 432–440; https://doi.org/10.1016/j.foodchem.2014.10.048
  15. 15. J. Zhishen, T. Mengcheng and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555–559; https://doi.org/10.1016/S0308-8146(98)00102-2
  16. 16. V. L. Singleton, R.Orthofer and R. M. Lamuela-Raventós, Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent, in Methods in Enzymology, Vol. 299, Oxidants and Antioxidants Part A (Ed. L. Packer), Academic Press, Waltham, USA, 1999, pp. 152–178.
  17. 17. M. H. Gordon, F. Paiva-Martins and M. Almeida, Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols, J. Agric. Food Chem. 49 (2001) 2480–2485; https://doi.org/10.1021/jf000537w
  18. 18. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med. 26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-3
  19. 19. I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “Anti-oxidant Power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76; https://doi.org/10.1006/abio.1996.0292
  20. 20. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, In vitro models for studying secondary plant metabolite digestion and bioaccessibility, Compr. Rev. Food Sci. Food Saf. 13 (2014) 413–436; https://doi.org/10.1111/1541-4337.12081
  21. 21. Editorial Board of Chinese Pharmacopoeia, Chinese Pharmacopoeia, Vol. 4, Chemistry and Industry Press, Beijing 2020, p. 374.
  22. 22. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), Current Step 4 version, November 2005; https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf; last access date February 6, 2022
  23. 23. F. Wang, K. Jiang and Z. Li, Purification and identification of genistein in Ginkgo biloba leaf extract, Chin. J. Chromatogr. 25 (2007) 509–513; https://doi.org/10.1016/S1872-2059(07)60019-4
  24. 24. A. Papadopoulou, R. J. Green and R. A. Frazier, Interaction of flavonoids with bovine serum Albumin: a fluorescence quenching study, J. Agric. Food Chem. 53 (2005) 158–163; https://doi.org/10.1021/jf048693g
  25. 25. J. Ortega-Vidal, A. Ruiz-Riaguas, M. L. Fernández-de Córdova, P. Ortega-Barrales and E. J. Llorent-Martínez, Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea, Influence of simulated gastrointestinal in vitro digestion, Food Chem. 287 (2019) 258–264, https://doi.org/10.1016/j.foodchem.2019.02.101
  26. 26. S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L., Phytochemistry 130 (2016) 201–206; https://doi.org/10.1016/j.phytochem.2016.05.005
  27. 27. K. J. Siebert, N. V. Troukhanover and P. Y. Lynn, Nature of polyphenol-protein interactions, J. Agric. Food Chem. 44 (1996) 80–85; https://doi.org/10.1021/jf9502459
  28. 28. J. A. Vinson, X. Su, L. Zubik and P. Bose, Phenol antioxidant quantity and quality in foods: fruits, J. Agric. Food Chem. 49 (2001) 5315–5321; https://doi.org/10.1021/jf0009293
  29. 29. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chem. 264 (2018) 471–475; https://doi.org/10.1016/j.foodchem.2018.04.012
  30. 30. M. D’Archivio, C. Filesi, R. Varì, B. Scazzocchio and R. Masella, Bioavailability of the polyphenols: Status and controversies, Int. J. Mol. Sci. 11 (2010) 1321–1342; https://doi.org/10.3390/ijms11041321
  31. 31. V. Vadivel and P. Brindha, Antioxidant property of solvent extract and acid/alkali hydrolysates from rice hulls, Food Biosci. 11 (2015) 85–91; https://doi.org/10.1016/j.fbio.2015.06.002
  32. 32. C. Monente, I. A. Ludwig, A. Stalmach, M. P. de Peña, C. Cid and A. Crozier, In vitro studies on the stability in the proximal gastrointestinal tract and bioaccessibility in Caco-2 cells of chlorogenic acids from spent coffee grounds, Int. J. Food Sci. Nutr. 66 (2015) 657–664; https://doi.org/10.3109/09637486.2015.1064874
  33. 33. X. Meng, C. Tan and Y. Feng, Solvent extraction and in vitro simulated gastrointestinal digestion of phenolic compounds from purple sweet potato, Int. J. Food Sci. Technol. 54 (2019) 2887–2896; https://doi.org/10.1111/ijfs.14153
  34. 34. M. Friedman and H. S. Jürgens, Effect of pH on the stability of plant phenolic compounds, J. Agric. Food Chem. 48 (2000) 2101–2110; https://doi.org/10.1021/jf990489j
  35. 35. M. Pellegrini, R. Lucas-Gonzalez, J. Fernández-López, A. Ricci, J. A. Pérez-Álvarez, C. lo Sterzo and M. Viuda-Martos, Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion, J. Funct. Foods 38 (2017) 77–88; https://doi.org/10.1016/j.jff.2017.08.042
  36. 36. L. Castaldo, A. Narváez, L. Izzo, G. Graziani and A. Ritieni, In vitro bioaccessibility and antioxidant activity of coffee silverskin polyphenolic extract and characterization of bioactive compounds using UHPLC-Q-Orbitrap HRMS, Molecules 25(9) (2020) Article ID 2132 (14 pages); https://doi.org/10.3390/molecules25092132
  37. 37. G. Velderrain-Rodríguez, A. Quirós-Sauceda, G. Mercado-Mercado, J. F. Ayala-Zavala, H. Astiazarán-García, R. M. Robles-Sánchez, A. Wall-Medrano, S. Sayago-Ayerdi and G. A. González-Aguilar, Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pineapple fruits by an in vitro digestion model, Food Sci. Technol. (Campinas) 36(2) (2016) 188–194; https://doi.org/10.1590/1678-457X.6729
  38. 38. F. F. de Araújo, D. de Paulo Farias, I. A. Neri-Numa, F. L. Dias-Audibert, J. Delafiori, F. G. de Souza, R. R. Catharino, C. K. do Sacramento and G. M. Pastore, Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit, LWT - Food Sci. Technol. 135 (2021) Article ID 110230; https://doi.org/10.1016/j.lwt.2020.110230. Article 110230
  39. 39. W. Khochapong, S. Ketnawa, Y. Ogawa and N. Punbusayakul, Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract, Food Chem. 348 (2021) Article ID 129094; https://doi.org/10.1016/j.foodchem.2021.129094
DOI: https://doi.org/10.2478/acph-2022-0033 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 483 - 507
Accepted on: Feb 20, 2022
|
Published on: Oct 18, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2022 Yubo Zhou, Yingxin Yang, Minyan Ma, Lingyun Xie, Aijuan Yan, Wen Cao, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.