Have a personal or library account? Click to login
Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities Cover

Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities

Open Access
|Jul 2018

References

  1. 1. E. R. Rayburn, S. J. Ezell and R. Zhang, Anti-inflammatory agents for cancer therapy, Mol. Cell. Pharmacol.1 (2009) 29–43; https://doi.org/10.4255/mcpharmacol.09.0510.4255/mcpharmacol.09.05284309720333321
  2. 2. M. J. Thun, S. J. Henley and C. Patrono, Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues, J. Natl. Cancer Inst.94 (2002) 252–266; https://doi.org/10.1093/jnci/94.4.25210.1093/jnci/94.4.25211854387
  3. 3. S. R. Pedada, N. S. Yarla, P. J. Tambade, B. L. Dhananjaya, A. Bishayee, K. M. Arunasree, G. H. Philip, G. Dharmapuri, G. Aliev, S. Putta and G. Rangaiah, Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents, Eur. J. Med. Chem.112 (2016) 289–297; https://doi.org/10.1016/j.ejmech.2016.02.02510.1016/j.ejmech.2016.02.02526907155
  4. 4. C. Sobolewski, C. Cerella, M. Dicato, L. Ghibelli and M. Diederich, The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies, Int. J. Cell Biol.2010 (2010) 1–21; https://doi.org/10.1155/2010/21515810.1155/2010/215158284124620339581
  5. 5. C. S. Williams, M. Mann and R. N. DuBois, The role of cyclooxygenases in inflammation, cancer, and development, Oncogene18 (1999) 7908–7916; https://doi.org/10.1038/sj.onc.120328610.1038/sj.onc.120328610630643
  6. 6. C. Ruegg, J. Zaric and R. Stupp, Non-steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer therapeutics: hypes, hopes and reality, Ann. Med.35 (2003) 476–487; https://doi.org/10.1080/0785389031001705310.1080/0785389031001705314649330
  7. 7. A. T. Koki and J. L. Masferrer, Celecoxib: a specific COX-2 inhibitor with anticancer properties, Cancer Control9 (2002) 28–35; https://doi.org/10.1177/107327480200902S0410.1177/107327480200902S0411965228
  8. 8. A. M. Gouda and A. H. Abdelazeem, An integrated overview on pyrrolizines as potential anti-inflammatory, analgesic and antipyretic agents, Eur. J. Med. Chem.114 (2016) 257–292; https://doi.org/10.1016/j.ejmech.2016.01.05510.1016/j.ejmech.2016.01.05526994693
  9. 9. A. M. Gouda, A. H. Abdelazeem, H. A. Omar, A. N. Abdalla, M. A. S. Abourehab and H. I. Ali, Pyrrolizines: design, synthesis, anticancer evaluation and investigation of the potential mechanism of action, Bioorg. Med. Chem. 25 (2017) 5637–5651; https://doi.org/10.1016/j.bmc.2017.08.039 (in press)10.1016/j.bmc.2017.08.03928916158
  10. 10. A. M. Gouda, H. I. Ali, W. H. Almalki, M. A. Azim, M. A. S. Abourehab and A. H. Abdelazeem, Design, synthesis, and biological evaluation of some novel pyrrolizine derivatives as COX inhibitors with anti-inflammatory/analgesic activities and low ulcerogenic liability, Molecules21 (2016) 1–21; https://doi.org/10.3390/molecules2102020110.3390/molecules21020201627396326867188
  11. 11. J.-P. Raynauld, J. Martel-Pelletier, P. Bias, S. Laufer, B. Haraoui, D. Choquette, A. D. Beaulieu, F. Abram, M. Dorais, E. Vignon and J.-P. Pelletier, Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI, Ann. Rheum. Dis.68 (2009) 938–947; https://doi.org/10.1136/ard.2008.08873210.1136/ard.2008.088732
  12. 12. W. Liu, J. Zhou, K. Bensdorf, H. Zhang, H. Liu, Y. Wang, H. Qian, Y. Zhang, A. Wellner, G. Rubner, W. Huang, C. Guo and R. Gust, Investigations on cytotoxicity and anti-inflammatory potency of licofelone derivatives, Eur. J. Med. Chem.46 (2011) 907–913; https://doi.org/10.1016/j.ejmech.2011.01.00210.1016/j.ejmech.2011.01.002
  13. 13. S. Tavolari, M. Bonafe, M. Marini, C. Ferreri, G. Bartolini, E. Brighenti, S. Manara, V. Tomasi, S. Laufer and T. Guarnieri, Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade, Carcinogenesis29 (2008) 371–380; https://doi.org/10.1093/carcin/bgm26510.1093/carcin/bgm265
  14. 14. S. Tavolari, A. Munarini, G. Storci, S. Laufer, P. Chieco and T. Guarnieri, The decrease of cell membrane fluidity by the non-steroidal anti-inflammatory drug Licofelone inhibits epidermal growth factor receptor signalling and triggers apoptosis in HCA-7 colon cancer cells, Cancer Lett.321 (2012) 187–194; https://doi.org/10.1016/j.canlet.2012.02.00310.1016/j.canlet.2012.02.003
  15. 15. V. Lisowski, C. Enguehard, J. Lancelot, D. Caignard, S. Lambel, S. Leonce, A. Pierre, G. Atassi, P. Renard and S. Rault, Design, synthesis and antiproliferative activity of tripentones: a new series of antitubulin agents, Bioorg. Med. Chem. Lett.11 (2001) 2205–2208; https://doi.org/10.1016/S0960-894X(01)00403-610.1016/S0960-894X(01)00403-6
  16. 16. V. Lisowski, S. Leonce, L. Kraus-Berthier, J. Sopkova-de Oliveira Santos, A. Pierre, G. Atassi, D.-H. Caignard, P. Renard and S. Rault, Design, synthesis, and evaluation of novel thienopyrrolizinones as antitubulin agents, J. Med. Chem.47 (2004) 1448–1464; https://doi.org/10.1021/jm030961z10.1021/jm030961z14998333
  17. 17. C. Rochais, T. Cresteil, V. Perri, M. Jouanne, A. Lesnard, S. Rault and P. Dallemagne, MR22388, a novel anti-cancer agent with a strong FLT-3 ITD kinase affinity, Cancer Lett.331 (2013) 92–98; https://doi.org/10.1016/j.canlet.2012.12.01710.1016/j.canlet.2012.12.01723268332
  18. 18. A. M. Gouda, A. H. Abdelazeem, E.-S. A. Arafa and K. R. A. Abdellatif, Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents, Bioorg. Chem.53 (2014) 1–7; https://doi.org/10.1016/j.bioorg.2014.01.00110.1016/j.bioorg.2014.01.00124462996
  19. 19. A. Etienne and Y. Correia, Derivatives of 2-pyrrolidone, Bull. Soc. Chem.10 (1969) 3704–3712.
  20. 20. W. A. Jacobs and M. Heidelberger, The ferrous sulfate and ammonia method for the reduction of nitro to amino compounds, J. Am. Chem. Soc.39 (1917) 1435–1439; https://doi.org/10.1021/ja02252a01710.1021/ja02252a017
  21. 21. M. Y. Ebeid, S. M. El-Moghazy, M. M. Hanna, F. A. Romeih and F. F. Barsoum, Synthesis and anti-HIV activity of some 6,7-dihydro-5H-pyrrolizine-3-carboxamide, 5,6,7,8-tetrahydroindolizine-3-carboxamide, 1-thioxo-1,2,3,5,6,7,8,9,10,11-decahydro-pyrimido-[1,6-a]azonine-4-carbonitrile and 6-thioxo-1,2,5,6,8,9,10,11,12,13,14,14a-dodecahydro-pyrimido[4ʹ,5ʹ:4,5]pyrimido-[1,6-a]azonine-1-one derivatives, Bull. Fac. Pharm. Cairo Univ.35 (1997) 171–183.
  22. 22. C. A. Winter, E. A. Risley and G. W. Nuss, Carrageenan induced edema in hind paw of the rats as an assay for anti-inflammatory drugs, Proc. Soc. Exp. Biol. Med.111 (1962) 544–547; https://doi.org/10.3181/00379727-111-2784910.3181/00379727-111-2784914001233
  23. 23. A. Mollica, R. Costante, A. Stefanucci, F. Pinnen, G. Lucente, S. Fidanza and S. Pieretti, Novel cyclic biphalin analogue with improved antinociceptive properties, J. Pept. Sci.19 (2013) 233–239; https://pubs.acs.org/doi/10.1021/ml500241n10.1002/psc.2465
  24. 24. N. Handler, W. Jaeger, H. Puschacher, K. Leisser and T. Erker, Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors, Chem. Pharm. Bull. (Tokyo) 55 (2007) 64–71; https://doi.org/10.1248/cpb.55.6410.1248/cpb.55.64
  25. 25. E.-S. A. Arafa, A. H. Abdelazeem, H. H. Arab and H. A. Omar, OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro, Acta Pharmacol. Sin.35 (2014) 394–400; https://doi.org/10.1038/aps.2013.18310.1038/aps.2013.183
  26. 26. I. Vermes, C. Haanen, H. Steffens-Nakken and C. Reutellingsperger, A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V, J. Immunol. Methods184 (1995) 39–51; https://doi.org/10.1016/0022-1759(95)00072-I10.1016/0022-1759(95)00072-I
  27. 27. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv.Rev.23 (1997) 3–25; https://doi.org/10.1016/S0169-409X(96)00423-110.1016/S0169-409X(96)00423-1
  28. 28. A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep.7 (2017) Article ID 42717; https://doi.org/10.1038/srep4271710.1038/srep42717533560028256516
  29. 29. B. S. Selinsky, K. Gupta, C. T. Sharkey and P. J. Loll, Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations, Biochemistry40 (2001) 5172–5180; https://doi.org/10.1021/bi010045s10.1021/bi010045s11318639
  30. 30. R. G. Kurumbail, A. M. Stevens, J. K. Gierse, J. J. McDonald, R. A. Stegeman, J. Y. Pak, D. Gildehaus, J. M. Miyashiro, T. D. Penning, K. Seibert, P. C. Isakson and W. C. Stallings, Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature384 (1996) 644–648; https://doi.org/10.1038/384644a010.1038/384644a08967954
DOI: https://doi.org/10.2478/acph-2018-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 251 - 273
Accepted on: Mar 18, 2018
Published on: Jul 4, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Ahmed M. Gouda, Ahmed H. Abdelazeem, Ashraf N. Abdalla, Muhammad Ahmed, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.