Have a personal or library account? Click to login
Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities Cover

Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities

Open Access
|Jul 2018

Abstract

Towards optimization of the pyrrolizine-5-carboxamide scaffold, a novel series of six derivatives (4a-c and 5a-c) was prepared and evaluated for their anti-inflammatory, analgesic and anticancer activities. The (EZ)-7-cyano-6-((4-hydroxybenzylidene)amino)-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4b) and (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5b) bearing the electron donating methyl group showed the highest anti-inflammatory activity while (EZ)-6-((4-chlorobenzylidene)amino)-7-cyano-N-phenyl-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5a) was the most active analgesic agent. Cytotoxicity of the new compounds was evaluated against the MCF-7, A2780 and HT29 cancer cell lines using the MTT assay. Compounds 4b and 5b displayed high anticancer activity with IC50 in the range of 0.30–0.92 μmol L−1 against the three cell lines, while compound (EZ)-N-(4-chlorophenyl)-7-cyano-6-((4-hydroxybenzylidene)-amino)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4c) was the most active against MCF-7 cells (IC50 = 0.08 μmol L−1). Both the anti-inflammatory and anticancer activities of the new compounds were dependent on the type of substituent on the phenyl rings. Substituents with opposite electronic effects on the two phenyl rings are preferable for high cytotoxicity against the MCF-7 and A2780 cells. COX inhibition was suggested as the molecular mechanism of the anti-inflammatory activity of the new compounds while no clear relationship could be observed between COX inhibition and anticancer activity. Compound 5b, the most active against the three cell lines, induced dose-dependent early apoptosis with 0.1–0.2 % necrosis in MCF-7 cells. New compounds showed promising drug-likeness scores while the docking study revealed high binding affinity to COX-2. Taken together, this study highlighted the significant impact of the substituents on the anti-inflammatory and anticancer activity of pyrrolizine-5-carboxamides, which could help in further optimization to discover good leads for the treatment of cancer and inflammation.

DOI: https://doi.org/10.2478/acph-2018-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 251 - 273
Accepted on: Mar 18, 2018
Published on: Jul 4, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Ahmed M. Gouda, Ahmed H. Abdelazeem, Ashraf N. Abdalla, Muhammad Ahmed, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.