Have a personal or library account? Click to login
Dynamic Identification of A Cable-Stayed Bridge Induced by Random Traffic Flow Cover

Dynamic Identification of A Cable-Stayed Bridge Induced by Random Traffic Flow

Open Access
|Sep 2025

References

  1. Sohn, H. (2007). Effect of environmental and operational variability on structural health monitoring. Philosophical Transactions of the Royal Society A. 365.
  2. Yazhou, Q., Yansong, C. (2024). Investigation of the Natural Frequency Change of the Suspension Bridge Under Operating Conditions. <em>The Baltic Journal of Road and Bridge Engineering 19</em>(3).
  3. Zhang, Q. W., Fan, L.C., Yuan, W. C. (2002). Traffic-inducted variability in dynamic properties of cable-stayed bridges. <em>Earthquake Engineering and structural Dynamics</em> 31, 2015-2021.
  4. Shao, Y., Miao, C., Brownjohn, J.M.W., Ding, Y. (2022). Vehicle-bridge interaction system for longspan suspension bridge under random traffic distribution. <em>Structures</em>, 44, 1070-1080.
  5. Macdonald, J. H. G., Daniell, W. E. (2005). Variation of modal parameters of a cable-stayed bridge identified from ambient vibration measurements and FE modelling. <em>Engineering Structures</em> 27, 1916–1930.
  6. Wang, H., Mao, J.X., Xu, Z.D. (2020). Investigation of dynamic properties of a long-span cable-stayed bridge during typhoon events based on structural health monitoring. <em>Journal of Wind Engineering &amp; Industrial Aerodynamics 11</em>(5), 305–316.
  7. Sheibani, M., Ghorbani-Tanha, A.K. (2021). Obtaining mass normalized mode shapes of motorway bridges based on the effect of traffic movement. <em>Structues</em>, 33, 2253–2263.
  8. Mao, J.X., Wang, H., Feng, D.M., Tao, T.Y., Zheng, W.Z. (2018). Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating conditions. <em>Structural Control Health Monitoring</em> 25.
  9. Green, M.F., Cebon, D., Cole, D.J. (1995). Effects of vehicle suspension design on dynamics of highway bridges. <em>Journal of Structural Engineering</em> – <em>ASCE</em> 121, 272–282.
  10. Kohm M., Stempniewski, L., Stark, A. (2023). Influence of vehicle traffic on modal-based bridge monitoring. <em>Journal of Civil Structural Health Monitoring</em>, 13, 219–234.
  11. Dao, S.D., Nguyen, D.D., Nguyen, N.L., Hung, L.Q. (2024). An Analytical Solution of Piezoelectric Energy Harvesting from Vibrations in Steel-Concrete Composite Beams subjected to Moving Harmonic Load. <em>Engineering, Technology &amp; Applied Science Research 14</em>(5), 16778–16783.
  12. Lei, X., Sun, M., Sun, Z., Siringoringo, D.M., Dong, Y. (2024). Data based feature representation of traffic flow for predicting bridge displacement responses with ensemble learning model. <em>Journal of Civil Structural Health Monitoring</em> 14(5).
  13. Gentile, C., Martinez, C.F. (2001). Dynamic testing of a curved cable-stayed bridge and numerical modelling for seismic analysis. Proc. 26th Conf. Our World Concr. Struct., Singapore, vol. 223–231, 231–238.
  14. Chul-Young, K., Dae-Sung, J., Nam-Sik, K., Jah-Geol, Y. (2001). Effect of Vehicle Mass on the Measured dynamic Characteristics of Bridges from Traffic-induced Vibration Test. Conference: 2001 IMAC XIX – 19th International Modal Analysis Conference, 1106–1111.
  15. Gara, F., Nicoletti, V., Carbonari, S., Ragni, L., Dall’Astra, A. (2020). Dynamic monitoring of bridges during static load tests: influence of the dynamics of trucks on the modal parameters of the bridge. <em>Journal of Civil Structural Health Monitoring</em> 10, 197–217.
  16. Camara, A., Ruiz-Teran, A. M. (2015). Multi-mode traffic-induced vibrations in composite ladder-deck bridges under heavy moving vehicles. <em>Journal of Sound and Vibration</em> 355, 246–283.
  17. Górski, P., Napieraj, M., Konopka, E. (2020): Variability evaluation of dynamic characteristics of highway steel bridge based on daily traffic-induced vibrations. <em>Measurement</em> 164.
  18. Shepherd, D. A., Scherer, M., Katzik, W., Dehn, F. (2021). Zur Ertüchtigung der Rheinbrücke Maxau mit hochfestem Beton. <em>Betonund Stahlbetonbau</em> 10, 754–764.
  19. Guo, Y.L. (2015). Nonstationary System Identification Techniques, University of Notre Dame, Notre Dame, USA.
  20. Kim, S., Kim, H.K. (2017). Damping identification of bridges under nonstationary ambient vibration, <em>Engineering</em> 3, 839–844.
  21. Sharma, A., Kumar, P., Vinayak, H.K., Walia, S.K., Patel, R.K. (2021). Hilbert transform and spectral kurtosis based approach in identifying the health state of retrofitted old steel truss bridge. <em>World Journal of Engineering, 19</em>(4), 491–509.
  22. Tao, T., Wang, H., Zhu, Q., Zou, Z., Li, J., Wang, L. (2021). Long-term temperature field of steel-box girder of a long-span bridge: Measurement and simulation, <em>Engineering Structures</em>, 236.
  23. Zahid, F.B., Ong, Z.C., Khoo, S.Y. (2020). A review of operational modal analysis techniques for in service modal identification. <em>Journal of the Brazilian Society of Mechanical Sciences and Engineering 42</em>(398).
  24. Nguyen, V.H., Mahowald, J., Schommer, S., Maas, S., Zuerbes, A. (2017). A Study of Temperature and Aging Effects on Eigenfrequencies of Concrete Bridges for Health Monitoring. <em>Engineering 9</em>(5).
  25. Sakai, M., Kaneko, N., Shin, R., Yamamoto, K. (2023). The Application of the SVD-FDD Hybrid Method to Bridge Mode Shape Estimation. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2022. Lecture Notes in Civil Engineering, 253.
  26. Chen, T., Wang, Q., Yao, X-J. (2024). High-resolution frequency domain decomposition for modal analysis of bridges using train-induced free-vibrations. <em>Advances in Structural Engineering. 27</em>(9),1528–154.
  27. Bachmann, H., Ammann, W., Deischl, F., Floegl, I., Hirsch, G.H., Klein, G.K., Lande, G.J., Mahrenholtz, O., Natke, H.G., Nussbaumer, H., Pretlove, A.J., Rainer, J.H., Saemann, E.U., Steinbeisser, L. (1991). Vibration problems in structures. Practical guidelines, Bulletin information No 209 CEB, Lozanna.
  28. Hwang, D., Kim, S., Kim, H.K. (2021). Long-Term Damping Characteristics of Twin Cable-Stayed Bridge under Environmental and Operational Variations. <em>Journal of Bridge Engineering, 26</em>(9).
  29. Kim, W., Hwang, J.-S., Kwon, D.-K., Kareem, A. (2024). Cumulative power spectral density-based damping estimation. <em>Earthquake Engineering Structural Dynamics, 53</em>(5).
  30. Ni, Y.C., Zhang, F.L., Liu, J.F. (2022). Dynamic performance investigation of a long-span suspension bridge using a Bayesian approach. <em>Mechanical Systems and Signal Processing</em> 168.
  31. Górski, P. (2015). Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using Random Decrement Method. <em>Engineering Structures</em> 83, 30–49.
  32. Górski, P. (2017). Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition. <em>Engineering Structures</em> 148, 277–292.
DOI: https://doi.org/10.2478/acee-2025-0040 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 191 - 203
Submitted on: May 11, 2025
Accepted on: Aug 24, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Monika NAPIERAJ, Piotr GÓRSKI, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.