Have a personal or library account? Click to login
Calibration of the Numerical Model of a Dynamic Replacement Column Formed Under Laboratory Conditions Cover

Calibration of the Numerical Model of a Dynamic Replacement Column Formed Under Laboratory Conditions

Open Access
|Sep 2025

References

  1. De Souza, T. F., Heineck, K. S., Ruver, C. A., Mohseni, A. P. V. &amp; DA Silva Lopes, L. (2022). Numerical simulations of dynamic replacement method in clay lateritic soils. Research Square (Research Square).<a href="https://doi.org/10.21203/rs.3.rs-2139606/v1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21203/rs.3.rs-2139606/v1.</a>
  2. Kwiecień, S. (2019). Odkształcalność kolumn wymi-any dynamicznej ustalana na podstawie próbnych obciążeń (Deformability of dynamic replacement columns determined on the basis of test loads) (T. 767, p. 213). Silesian University of Technology. https://delibra.bg.polsl.pl/dlibra/show-content/publication/edition/62696?ID=62696.
  3. Gunaratne, M., Mullins G., Stinnette P., Thilakasiri S. (1997). Stabilization of Florida organic material by dynamic replacement. Final report of State Project 99700-3541-119. Tampa, 1997.
  4. Elsiwi, W., Gunaratne, M., &amp; Mullins, G. (2023). Application of FEM tools in efficient field implementation of dynamic replacement of soft soils. <em>International Journal of Geotechnical Engineering, 17</em>(7–10), 738–752. <a href="https://doi.org/10.1080/19386362.2023.2264052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2023.2264052</a>
  5. Łupieżowiec, M. (2022). Modeling the phenomenon of propagation of technological impulses in subsoil. <em>International Journal of Geomechanics, 22</em>(10). <a href="https://doi.org/10.1061/(asce)gm.1943-5622.0002551." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(asce)gm.1943-5622.0002551.</a>
  6. Danilewicz, A., &amp; Sikora, Z. (2015). Numerical simulation of crater creating process in dynamic replacement method by smooth particle hydrodynamics. <em>Studia Geotechnica et Mechanica, 36</em>(3), 3–8. <a href="https://doi.org/10.2478/sgem-2014-0022." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/sgem-2014-0022.</a>
  7. Danilewicz, A. (2014). Numeryczna symulacja proce-su formowania kolumny kamiennej metodą wymiany dynamicznej (Numerical simulation of the stone column forming process by dynamic replacement method). Doctoral dissertation. Gdańsk University of Technology.
  8. Sołowski W., Sloan S., Kanty P., Kwiecień S. (2013). Numerical simulation of a small scale dynamic replacement stone column creation experiment", in Particle-based methods III : Fundamentals and applications. Proceedings of the III International Conference Particles 2013, Stuttgart, Germany, 18-20 September 2013, M. Bischoff, ed., Barcelona: <em>International Center for Numerical Methods in Engineering</em>, 522–533.
  9. Kanty P., Kwiecień S., Sękowski J. (2015). Wpływ for-mowania wbijanej kolumny kamiennej na otoczenie gruntowe (The Impact of the Formation of the Hammered Stone Column on the Ground Environment), Silesian University of Technology 2015, vol. 568, Monograph.
  10. LS-DYNA. Keyword user’s manual. Volume I-IV. ANSYS. 2024
  11. Konkol, J., &amp; Bałachowski, L. (2016). Large deformation finite element analysis of undrained pile installation. <em>Studia Geotechnica et Mechanica, 38</em>(1), 45–54. <a href="https://doi.org/10.1515/sgem-2016-0005." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/sgem-2016-0005.</a>
  12. Ghanbari, E., &amp; Hamidi, A. (2017). Stability analysis of dry sandy slopes adjacent to Dynamic compaction process. <em>Scientia Iranica, 24</em>(1), 82–95. <a href="https://doi.org/10.24200/sci.2017.2379." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.24200/sci.2017.2379.</a>
  13. Pourjenabi, M., Ghanbari, E., &amp; Hamidi, A. (2014). Numerical modeling of dynamic compaction in dry sand using different constitutive models. Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), 3195–3202. <a href="https://doi.org/10.7712/120113.4731.c1020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7712/120113.4731.c1020.</a>
  14. Kwiecień, S., Ihnatov, S., &amp; Kowalska, M. (2023). Influence of soft layer thickness on the aggregate displacement in the backfill material of dynamic replacement columns – results of laboratory model tests. Archives of Civil Engineering. <a href="https://doi.org/10.24425/ace.2023.146079." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.24425/ace.2023.146079.</a>
DOI: https://doi.org/10.2478/acee-2025-0036 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 137 - 146
Submitted on: Jun 10, 2024
Accepted on: Aug 12, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Sławomir KWIECIEŃ, Piotr KANTY, Ameen TOPA, Michał SOBOTA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.