References
- De Souza, T. F., Heineck, K. S., Ruver, C. A., Mohseni, A. P. V. & DA Silva Lopes, L. (2022). Numerical simulations of dynamic replacement method in clay lateritic soils. Research Square (Research Square).https://doi.org/10.21203/rs.3.rs-2139606/v1.
- Kwiecień, S. (2019). Odkształcalność kolumn wymi-any dynamicznej ustalana na podstawie próbnych obciążeń (Deformability of dynamic replacement columns determined on the basis of test loads) (T. 767, p. 213). Silesian University of Technology. https://delibra.bg.polsl.pl/dlibra/show-content/publication/edition/62696?ID=62696.
- Gunaratne, M., Mullins G., Stinnette P., Thilakasiri S. (1997). Stabilization of Florida organic material by dynamic replacement. Final report of State Project 99700-3541-119. Tampa, 1997.
- Elsiwi, W., Gunaratne, M., & Mullins, G. (2023). Application of FEM tools in efficient field implementation of dynamic replacement of soft soils. International Journal of Geotechnical Engineering, 17(7–10), 738–752. https://doi.org/10.1080/19386362.2023.2264052
- Łupieżowiec, M. (2022). Modeling the phenomenon of propagation of technological impulses in subsoil. International Journal of Geomechanics, 22(10). https://doi.org/10.1061/(asce)gm.1943-5622.0002551.
- Danilewicz, A., & Sikora, Z. (2015). Numerical simulation of crater creating process in dynamic replacement method by smooth particle hydrodynamics. Studia Geotechnica et Mechanica, 36(3), 3–8. https://doi.org/10.2478/sgem-2014-0022.
- Danilewicz, A. (2014). Numeryczna symulacja proce-su formowania kolumny kamiennej metodą wymiany dynamicznej (Numerical simulation of the stone column forming process by dynamic replacement method). Doctoral dissertation. Gdańsk University of Technology.
- Sołowski W., Sloan S., Kanty P., Kwiecień S. (2013). Numerical simulation of a small scale dynamic replacement stone column creation experiment", in Particle-based methods III : Fundamentals and applications. Proceedings of the III International Conference Particles 2013, Stuttgart, Germany, 18-20 September 2013, M. Bischoff, ed., Barcelona: International Center for Numerical Methods in Engineering, 522–533.
- Kanty P., Kwiecień S., Sękowski J. (2015). Wpływ for-mowania wbijanej kolumny kamiennej na otoczenie gruntowe (The Impact of the Formation of the Hammered Stone Column on the Ground Environment), Silesian University of Technology 2015, vol. 568, Monograph.
- LS-DYNA. Keyword user’s manual. Volume I-IV. ANSYS. 2024
- Konkol, J., & Bałachowski, L. (2016). Large deformation finite element analysis of undrained pile installation. Studia Geotechnica et Mechanica, 38(1), 45–54. https://doi.org/10.1515/sgem-2016-0005.
- Ghanbari, E., & Hamidi, A. (2017). Stability analysis of dry sandy slopes adjacent to Dynamic compaction process. Scientia Iranica, 24(1), 82–95. https://doi.org/10.24200/sci.2017.2379.
- Pourjenabi, M., Ghanbari, E., & Hamidi, A. (2014). Numerical modeling of dynamic compaction in dry sand using different constitutive models. Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), 3195–3202. https://doi.org/10.7712/120113.4731.c1020.
- Kwiecień, S., Ihnatov, S., & Kowalska, M. (2023). Influence of soft layer thickness on the aggregate displacement in the backfill material of dynamic replacement columns – results of laboratory model tests. Archives of Civil Engineering. https://doi.org/10.24425/ace.2023.146079.