Have a personal or library account? Click to login
Effect of Basalt Dust Addition on Geotechnical Parameters of Non-Cohesive Soil Cover

Effect of Basalt Dust Addition on Geotechnical Parameters of Non-Cohesive Soil

Open Access
|Sep 2025

References

  1. Jastrzębska, M., Knapik-Jajkiewicz, K., & Kowalska, M. (2024). Zrównoważona geotechnika. Wybrane materiały alternatywne (Sustainable geotechnics. Selected alternative materials). Warszawa: Wydawnictwo Naukowe PWN SA.
  2. Dobiszewska, M., & Beycioğlu, A. (2020). Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition. Materials, 13, 3503, 1–18.
  3. Seidel, E. P., Ertel, L. G., Pan, R., Da Silva Franco, J. A., & Dos Santos, D. G. (2021). Basalt Rock Powder and Organic Compounds in Corn Crops. Scientia Agraria Paranaensis, 20(3), 287–294.
  4. Binici, H., Yardim, Y., Aksogan, O., Resatoglu, R., Dincer, A., & Karrpuz, A. (2020). Durability properties of concretes made with sand and cement size basalt. Sustainable Materials and Technologies, 23(4), 1–9.
  5. Kostrzewa-Demczuk, P., Stępień, A., Dachowski, R., & Krugiełka, A. (2021). The use of basalt powder in autoclaved brick as a method of production waste management. Journal of Cleaner Production, 320, 1–11.
  6. Conceição, L. T., Silva, G. N., Silva Holsback, H. M., De Figueiredo Oliveira, C., Marcante, N. C., De Souza Martins, É., De Souza Santos, F. L., & Santos, E. F. (2022). Potential of basalt dust to improve soil fertility and crop nutrition. Journal of Agriculture and Food Research, 10, 100443, 1–8.
  7. Luchese, A. V., De Castro Leite, I. J. G., Da Silva Giaretta, A. P., Linhares Alves, M., Pivetta, L. A., & Missio, R. F. (2023). Use of quarry waste basalt rock powder as a soil remineralizer to grow soybean and maize. Heliyon, 9(3), 14050, 1–11.
  8. Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). valuation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656.
  9. Okagbue, C. O., & Onyeobi, T. U. S. (1999). Potential of marble dust do stabilise red tropical soils for road construction. Engineering Geology, 53, 371–380.
  10. Öncü, Ę& Bilsel, H. (2018). Utilization of waste marble to enhance volume change and strength characteristics of sand-stabilized expansive soil. Environmental Earth Sciences, 77(12), 461, 1–13.
  11. Umar, I. H., Lin, H., & Ibrahim, A. S. (2023). Laboratory Testing and Analysis of Clay Soil Stabilization Using Waste Marble Powder. Applied Sciences, 13(16), 9274, 1–23.
  12. Abdelkader, H. A. M., Ahmed, A. S. A., Hussein, M. M. A., Ye, H., & Zhang, J. (2022). An Experimental Study on Geotechnical Properties and Micro Structure of Expansive Soil Stabilized with Waste Granite Dust. Sustainability, 14(10), 6218, 1–24.
  13. Amulya, G., Baig Moghal, A. A., & Almajed, A. (2021). A State-of-the-Art Review on Suitability of Granite Dust as a Sustainable Additive for Geotechnical Applications. Crystals, 11, 1526, 1–16.
  14. Eltwati, A. S., Tarhuni, F., & Elkaseh, A. (2020). Engineering Properties of Clayey Soil Stabilized with Waste Granite Dust. International Journal of Advance Science and Technology, 29(10), 750–757.
  15. Gillman, G. P., Burkett, D. C., & Coventry, R. J. (2001). A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry. Australian Journal of Soil Research, 39(4), 799 – 811.
  16. Richardson, J. B. (2025). Basalt Rock Dust Amendment on Soil Health Properties and Inorganic Nutrients–Laboratory and Field Study at Two Organic Farm Soils in New England, USA. Agriculture, 15(1), 52, 1–18.
  17. Rodrigues, M., Cambrussi Bortolini, P., Kosera Neto, C., De Andrade, E. A., Dos Passos, A. I., Palczewski Pacheco, F., Nanni, M. R., & de Melo Teixeira, L. (2024). Unlocking higher yields in Urochloa brizantha: the role of basalt powder in enhancing soil nutrient availability. Discover Soil, 1, 4, 1–17.
  18. International Organization for Standardization. (2017). Geotechnical investigation and testing – Identification and classification of soil. Part 1: Identification and description (ISO Standard No. 14688:1).
  19. European Committee for Standardization. (2012). Unbound and hydraulically bound mixtures. Part 2: Test methods for laboratory reference density and water content – Proctor compaction (EN standard No. 13286-2).
  20. International Organization for Standardization. (2019). Geotechnical investigation and testing – Laboratory testing of soil. Part 11: Permeability tests (ISO Standard No. 17892-11).
  21. International Organization for Standardization. (2017). Geotechnical investigation and testing – Laboratory testing of soil. Part 5: Incremental loading oedometer test (ISO Standard No. 17892-5).
  22. International Organization for Standardization. (2018). Geotechnical investigation and testing – Laboratory testing of soil. Part 10: Direct shear tests (ISO Standard No. 17892-10).
  23. Wiłun, Z. (2013). Zarys geotechniki (Fundamentals of geotechnics). Warszawa: Wydawnictwa Komunikacji i Łączności.
  24. Hough, B. K. (1969). Basic Soils Engineering. New York: Ronald Press Company.
  25. Day, R. W. (2010). Foundation Engineering Handbook. Design and Construction with the 2009 International Building Code. New York: McGraw Hill.
DOI: https://doi.org/10.2478/acee-2025-0035 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 129 - 136
Submitted on: May 6, 2025
Accepted on: Aug 5, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Iwona CHMIELEWSKA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.