References
- Huang, Z., Liu, C., Zhao, X., Dong, J., Sheng, B. (2020). Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environmental Science Europe, 32, 23.
- Gopal, V., Krishnamurthy, R.R, Vignesh, R., Nathan C.S., Anshu, R., Kalaivanan, R., Mohana, P., Magesh, N.S., Bharath, K.M., Bessa, A.Z.E, Abdelrahman, K., Abioui, M. (2023). Assessment of heavy metal contamination in the surface sediments of the Vedaranyam coast, Southern India. Regional Studies in Marine Science, 65, 103081.
- Sojka, M., Jaskuła, J., Barabach, J., Ptak, M., Zhu, S. (2022). Heavy metals in lake surface sediments in protected areas in Poland: concentration, pollution, ecological risk, sources and spatial distribution. Scientific Reports, 12, 15006.
- Córdoba-Tovar, T., Marrugo-Negrete, J., Barón, P.A.R., Díez, S. (2023). Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia. Environmental Research, 236, 116759.
- Nasr, R.A., Shetaia, S.A., Lasheen, E.R., Dar, M.A.,. Zakaly, H.M.H. (2023). Pollution and health risk assessment of heavy metals in the surface sediments of Timsah Lake, Suez Canal, Egypt. Environmental Nanotechnology, Monitoring & Management, 20, 100867.
- Bao, Q., Liu, C., Friese, K., Dadi, T., Yu, J., Fan, C., Shen, Q. (2023). Understanding the Heavy Metal Pollution Pattern in Sediments of a Typical Small- and Medium-Sized Reservoir in China. International Journal of Environmental Research and Public Health, 20(1), 708.
- Chris, D.I., Onyena, A.P., Kabari Sam, K. (2023). Evaluation of human health and ecological risk of heavy metals in water, sediment and shellfshes in typical artisanal oil mining areas of Nigeria. Environmental Science and Pollution Research, 30, 80055–80069.
- Tytła, M., Kernert, J. (2023). Ecological and human health risks assessment of heavy metals in bottom sediments of the Pławniowice water reservoir – artificial lake (Silesian Voivodeship, Poland). Zeszyty Naukowe SGSP, 87, 35–51.
- Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T.B., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34, 101865.
- Haidar, Z., Fatema, K., Shoily, S.S., Sajib, A.A. (2023). Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicology Reports, 10, 554–570.
- Bhuyan, M.S., Haider, S.M.B., Meraj, G., Bakar, M.A., Islam, M.T., Kunda, M., Siddique, M.A.B., Ali, M.M., Mustary, S., Mojumder, I.A., Bhat, M.A. (2023). Assessment of Heavy Metal Contamination in Beach Sediments of Eastern St. Martin’s Island, Bangladesh: Implications for Environmental and Human Health Risks. Water, 15(13), 2494.
- Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo Journal, 2(3), 108–118.
- Hakanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14(8), 975–1001.
- United States Environmental Protection Agency (US EPA) (1989). Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A). Washington, DC. EPA/540/1-89/002.
- United States Environmental Protection Agency (US EPA) (2001). Risk Assessment Guidance for Superfund: Vol III - Part A, Process for Conducting Probabilistic Risk Assessment. Washington, DC. EPA 540-R-02-002 OSWER 9285.7-45, PB2002 963302.
- United States Environmental Protection Agency (US EPA) (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response. Washington, DC. OSWER 9355.4-24
- Sojka, M., Ptak, M.. Jaskuła, J., Krasniqi, V. (2023). Ecological and Health Risk Assessments of Heavy Metals Contained in Sediments of Polish Dam Reservoirs. International Journal of Environmental Research and Public Health, 20(1), 324.
- Główny Inspektorat Ochrony Środowiska (GIOŚ) (Chief Inspectorate for Environmental Protection). Stefaniak, M., Stanek, K., Stanek, A., Maderska-Mazur, A., Król, J., Mutwil, D. (2022). Monitoring osadów dennych rzek i jezior w latach 2020–2021. Stan zanieczyszczenia osadów dennych rzek i jezior w 2021 r. (Zadanie 2B-1) (Monitoring of bottom sediments of rivers and lakes in 2020–2021. Pollution level of bottom sediments of rivers and lakes in 2021 (Task 2B-1)). Eurofins OBiKŚ Polska Sp.z.o.o., Katowice (Report commissioned by the GIOŚ). Retrieved from
https://www.gov.pl/web/gios/program-badan - Saleem, M., Iqbal, J., Shah, M.H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in fresh water sediments—a case study from Mangla Lake, Pakistan. Environmental Nanotechnology, Monitoring and Management, 4, 27–36.
- Tytła, M., Kostecki, M. (2019). Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic “hot spot” area (Poland). Environmental Earth Sciences, 78, 179.
- Chlost, I. (2019). Water Balance of Lake Gardno. Limnological Review, 19(1), 15–23.
- Wojciechowski, A. (1987). Profil geochemczny osadów jeziora Gardno (Geochemical profile of deposits in Lake Gardno). Badania Fizjograficzne nad Polską Zachodnią, Tom XXXVII, seria A, Geografia Fizyczna. Poland, Warszawa.
- Tylkowski, J., Samołyk, M., Czyryca, P., Winowski, M. (2016). Sprawozdanie z realizacji II etapu umowy nr 18/2015/F pt. „Realizacja programu Zintegrowanego Monitoringu Środowiska Przyrodniczego - nadzór merytoryczny oraz prowadzenie pomiarów w latach 2015 – 2017”. Zadanie nr 1 Raport z realizacji programu badawczo-pomiarowego Zintegrowanego Monitoringu Środowiska Przyrodniczego w Stacji Bazowej WOLIN w 2015 roku. (Report on the implementation of the second stage of contract No. 18/2015/F titled „Implementation of the Integrated Monitoring of the Natural Environment program – substantive supervision and measurement in 2015 – 2017”. Task No. 1 Report on the implementation of the research and measurement program of Integrated Monitoring of the Natural Environment at the WOLIN Base Station in 2015). Poland, Biała Góra. Retrived from
https://wios.szczecin.pl/bip/files/5A7076581E314E53B02DAECBCB9CF684/Raport%20z%20realizacji%20programu%20%20badawczo-pomi-arowego%20ZM%C5%9AP%20w%20Stacji%20Bazowej%20WOLIN%20w%202015%20roku.pdf - Tritt, R. (2021). Water circulation in polymictic flow-through lakes on the example of Swarzędzkie and Wolsztyńskie Lakes (PhD dissertation, Adam Mickiewicz University). Poland, Poznań. Retrieved from
https://hdl.handle.net/10593/26782 - Kowalczewska-Madura, K., Rosińska, J., Dondajewska-Pielka, R., Gołdyn, R., Kaczmarek, L. (2020). The Effects of Limiting Restoration Treatments in a Shallow Urban Lake. Water, 12(5), 1383.
- Rosińska, J., Kozak, A., Dondajewska, R., Gołdyn, R. (2017). Cyanobacteria blooms before and during the restoration process of a shallow urban lake. Journal of Environmental Management, 198, 340–347.
- Osuch, A., Osuch, E., Rybacki, P., Herkowiak, M.., Osuch, E. (2023). Theoretical efficiency of the pulverising aerator – A case study based on Lake Swarzędzkie. Journal of Water and Land Development, 57(IV–VI), 204–209.
- Kondracki, J. (1998). Geografia regionalna Polski (Regional geography of Poland). Wydawnictwo Naukowe PWN. Poland, Warszawa.
- Zielony, R., Kliczkowska, A. (2012). Regionalizacja przyrodniczo-leśna Polski 2010 (Natural and forest regionalization of Poland 2010). CILP. Poland, Warszawa.
- Geoportal GIOŚ INSPIRE. Retrieved from
https://inspire.gios.gov.pl/imap/#gpmap=gpmapZMSP - Madzia, M. (2015). Funkcje zbiornika retencyjnego Wisła-Czarne w redukcji fali powodziowej (Capabilities of retention Reservoir Wisła-Czarne in reduction of flood wave). Ecological Engineering & Environmental Technology, 41, 173–180.
- Machowski, R., Rzętała, M. (2023). Zbiornik Wisła Czarne (Wisła-Czarne Reservoir). In Encyklopedia Województwa Śląskiego: : [projekt WWW]. T. 10 / Kaczmarek Ryszard [et al.] (eds.). Instytut Badań Regionalnych Biblioteki Śląskiej. Retrieved from
https://opus.us.edu.pl/info/article/USL2ad0d1c36f6c4c7681b214d7aac5c157/ - ArcGIS Online, Esri's web-based mapping software. Retrieved from
https://www.arcgis.com/apps/mapviewer/index.html - Portal Google Maps. Retrieved from
https://www.google.pl/maps/ - Choiński, A. (2006). Katalog jezior Polski (Catalog of Polish lakes). Wydawnictwo Naukowe UAM. Poland, Poznań.
- Jańczak, J. (1997). Atlas jezior Polski, T II (Atlas of Polish lakes, T II). Bogucki Wydawnictwo Naukowe. Poland, Poznań.
- Kutyło-Bromka, A., Laskowska, E. (2014). Program ochrony środowiska gminy Szczutowo na lata 2014 – 2017 z perpektywą do 2021 roku (aktualizacja) (Environmental protection program of the Szczutowo commune for 2014 – 2017 with a perspective until 2021 (update)). Poland, Szczutowo. Retrived from
https://fs.siteor.com/szczutowo/article_attachments/attachments/60323/original/PO%C5%9A_Gmina_Szczutowo-_projekt.pdf?1404981639 - Polski Komitet Normalizacyjny – PKN (Polish Committee for Standardization) (2005). Pomiar przepływu w korytach otwartych. Pobieranie próbek materiału dennego (Flow measurements in open channels. Bottom sediment sampling). PKN Standard No. PN-EN ISO 4364:2005.
- Polski Komitet Normalizacyjny – PKN (Polish Committee for Standardization) (2018). Ogólne wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących (General requirements for the competence of testing and calibration laboratories). PKN Standard No. PN EN ISO/IEC 17025:2018-02.
- Polski Komitet Normalizacyjny – PKN (Polish Committee for Standardization) (2006). Charakteryzowanie odpadów – Roztwarzanie do dalszego oznaczania części pierwiastków rozpuszczalnych w wodzie królewskiej (Characterization of waste – Digestion for subsequent determination of aqua regia soluble portion of elements). PKN Standard No. PN-EN 13657:2006.
- Polski Komitet Normalizacyjny – PKN (Polish Committee for Standardization) (2009). Jakość wody – Oznaczanie wybranych pierwiastków metodą optycznej spektrometrii emisyjnej z plazmą wzbudzoną indukcyjnie (ICP-OES) (Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICPOES)). PKN Standard No. PN-EN ISO 11885:2009.
- Polski Komitet Normalizacyjny – PKN (Polish Committee for Standardization) (2004). Charakterystyka osadów ściekowych – Oznaczanie suchej pozostałości i zawartości wody (Characterization of sewage sludge – Determination of dry residue and water content). PKN Standard No. PN-EN 12880:2004.
- Şimşek, A., Özkoç, H.B., Bakan, G. (2022). Environmental, ecological and human health risk assessment of heavy metals in sediments at Samsun-Tekkeköy, North of Turkey. Environmental Science and Pollution Research, 29, 2009–2023.
- Kabata-Pendias, A. (2011). Trace elements in soils and plants. 4th ed. London, New York: Taylor & Francis.
- International Agency for Research on Cancer (IARC). (2012). Monographs on the Evaluation of Carcinogenic Risks to Humans. Retrieved from
https://www.epa.gov/iris - Aendo, P., Netvichian, R., Thiendedsakul, P., Khaodhiar, S., Tulayakul, P. (2022). Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. Journal of Environmental and Public Health, 3062215.
- Miletić, A., Lučić, M., Onjia, A. (2023). Exposure Factors in Health Risk Assessment of Heavy Metal(loid)s in Soil and Sediment. Metals, 13(7), 1266.
- Majewski, M., Kostrzewski, A. (2023). Sprawozdanie z realizacji I etapu umowy nr GIOŚ/ZP/139/2023/DMŚ/NFOŚiGW pt. „Realizacja programu Zintegrowanego Monitoringu Środowiska Przyrodniczego (ZMŚP) – nadzór merytoryczny oraz przeprowadzenie badań w latach 2023–2025”. Zadanie nr 2. Stan geoekosystemów Polski w 2022 roku (Report on the implementation of the first stage of contract No. GIOŚ/ZP/139/2023/DMŚ/NFOŚiGW entitled „Implementation of the Integrated Monitoring of the Natural Environment program (ZMŚP) - substantive supervision and research in 2023–2025”. Task No. 2. The state of Poland's geoecosystems in 2022). Poland, Poznań. Retrived from
https://researchportal.amu.edu.pl/info.seam?ps=20&id=UAMe66bfdf7f41b4d24a801a3c96a34231e&lang=pl&pn=1&cid=5621615 - Baran, A., Tack, F.M.G., Delemazure, A., Wieczorek, J., Tarnawski, M., Birch, G. (2023). Metal contamination in sediments of dam reservoirs: A multi-facetted generic risk assessment. Chemosphere, 310, 136760.
- Szarłowicz, K., Baran, A., Wójs, K., Wójcik, S. (2024). Estimation of the level of anthropogenic impact based on the determination of radionuclides and heavy metals in sediments taken from Rybnik reservoir, Poland. Environmental Science and Pollution Research, 31, 37356–37365.
- Smal, H., Ligęza, S., Wójcikowska-Kapusta, A., Baran, S., Urban, D., Obroślak, R., Pawłowski, A. (2015). Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland). Archives of Environmental Protection, 41(4), 67–80.
- Sojka, M., Jaskuła, J., Siepak, M. (2019). Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water, 11(1), 56.
- Pohl, A., Tytła, M., Kernert, J., Bodzek, M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis. Desalination and Water Treatment, 258, 207–222.
- Tiruneh, A.T., Fadiran, A.O., Mtshali, J.S. (2014). Evaluation of the risk of heavy metals in sewage sludge intended for agricultural application in Swaziland. International Journal of Environmental Science and Technology, 5, 197–216.
- Tytła M., Dmochowska, A., Dmochowski, D., Jaworska K. (2018). Ecological risk assessment of trace metals in the bottom sediments of the young water reservoir–Bardowskiego Lagoon (Warsaw) case study. E3S Web of Conferences, 44, 00182.
- Tytła, M., Kernert, J. (2021). Ocena zanieczyszczenia osadów dennych metalami ciężkimi oraz analiza potencjalnego ryzyka ekologicznego stwarzanego przez te pierwiastki na przykładzie zbiornika zaporowego Kozłowa Góra (województwo śląskie, Polska) – studium przypadku (Pollution and ecological risk assessment of heavy metals in bottom sediments. A case study of dam water reservoir Kozłowa Góra (Silesian Voivodeship, Poland)). In: Nyćkowiak, J., Leśny, J. (Eds.), Badania i Rozwoj Młodych Naukowcow w Polsce, Ochrona środowiska. Wydawnictwo Młodzi Naukowcy, 66–73. Poland, Poznań.
- Sidoruk, M. (2023). Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Bottom Sediments: A Case Study of Eutrophic Bukwałd Lake Located in an Agricultural Catchment. International Journal of Environmental Research and Public Health, 20(3), 2387.
- Elgendy, A.R., El Daba, A.S., El-Sawy, M.A., Alprol, A.E., Zaghloul, G.Y. (2024). A comparative study of the risk assessment and heavy metal contamination of coastal sediments in the Red sea, Egypt, between the cities of El-Quseir and Safaga. Geochemical Transactions, 25, 3.
- Yüksel, B., Ustaoglu, F., Tokatli, C., Islam, M.S. (2022). Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: association between garbage disposal facility and metallic accumulation. Environmental Science and Pollution Research, 29, 17223–17240.