References
- Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air – Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317–327.
https://doi.org/10.1016/j.atmosenv.2015.08.057 - Birinci, E., Deniz, A., & Özdemir, E. T. (2023). The relationship between PM10 and meteorological variables in the mega city Istanbul. Environmental Monitoring and Assessment, 195(2), 304.
https://doi.org/10.1007/s10661-022-10866-3 - Girotti, C., Fernando Kowalski, L., Silva, T., Correia, E., R. Prata Shimomura, A., Akira Kurokawa, F., & Lopes, A. (2025). Air pollution Dynamics: The role of meteorological factors in PM10 concentration patterns across urban areas. City and Environment Interactions, 25, 100184.
https://doi.org/10.1016/j.cacint.2024.100184 - Kirešová, S., & Guzan, M. (2022). Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng, 3(3), 343–363.
https://doi.org/10.3390/eng3030025 - Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77(1–2), 35–48.
https://doi.org/10.1007/s10874-020-09401-w - Lu, H., & Fang, G. (2002). Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan. The Science of The Total Environment, 298(1–3), 119–130.
https://doi.org/10.1016/S0048-9697(02)00164-X - United States Geological Survey. (b.d.). Annual National Land Cover Database (NLCD) Collection 1 Products. U.S. Geological Survey.
https://doi.org/10.5066/P94UXNTS - Probeck, M., Ruiz, I., Ramminger, G., Fourie, C., Maier, P., Ickerott, M., … Dufourmont, H. (2021). CLC+ Backbone: Set the Scene in Copernicus for the Coming Decade. W 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (s. 2076–2079). Zaprezentowano na 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.
https://doi.org/10.1109/IGARSS47720.2021.9553252 - Xian, G. (2007). Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24), 5427–5445.
https://doi.org/10.1080/01431160701227653 - Tao, Z., Santanello, J. A., Chin, M., Zhou, S., Tan, Q., Kemp, E. M., & Peters-Lidard, C. D. (2013). Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF) model study. Atmospheric Chemistry and Physics, 13(13), 6207–6226.
https://doi.org/10.5194/acp-13-6207-2013 - Yang, W., & Jiang, X. (2021). Evaluating the influence of land use and land cover change on fine particulate matter. Scientific Reports, 11(1), 17612.
https://doi.org/10.1038/s41598-021-97088-8 - Lu, Y., Yang, X., Wang, H., Jiang, M., Wen, X., Zhang, X., & Meng, L. (2023). Exploring the effects of land use and land cover changes on meteorology and air quality over Sichuan Basin, southwestern China. Frontiers in Ecology and Evolution, 11.
https://doi.org/10.3389/fevo.2023.1131389 - Yu, Y. T., Xiang, S., Li, R., Zhang, S., Zhang, K. M., Si, S., … Wu, Y. (2022). Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoring. The Science of the Total Environment, 829, 154478.
https://doi.org/10.1016/j.scitotenv.2022.154478 - GUS. (2024, lipiec 22). Powierzchnia i ludność w przekroju terytorialnym w 2024 roku. stat.gov.pl. Access 21.12.2024, from
https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/powierzchnia-i-ludnosc-w-przekroju-terytorialnym-w-2024-roku,7,21.html - Badyda, A., Krawczyk, P., Bihałowicz, J. S., Bralewska, K., Rogula-Kozłowska, W., Majewski, G., … Rogulski, M. (2020). Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers Emissions. Energies, 13(23), 6245.
https://doi.org/10.3390/en13236245 - GDDKiA. (2021). General Traffic Measurement (GPR) 2020/2021. Access 24.09.2023, from
https://www.gov.pl/web/gddkia/generalny-pomiar-ruchu-20202021 - Bihałowicz, J. S., Rogula-Kozłowska, W., Rogula-Kopiec, P., Świsłowski, P., Rajfur, M., & Olszowski, T. (2023). One-Year-Long, Comprehensive Analysis of PM Number and Mass Size Distributions in Warszawa (Poland). Ecological Chemistry and Engineering S, 30(4), 541–556.
https://doi.org/10.2478/eces-2023-0047 - Miłek, D. (2018). Spatial differentiation in the social and economic development level in Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 487–507.
- Raszka, B., Dzieżyc, H., & Hełdak, M. (2021). Assessment of the Development Potential of Post-Industrial Areas in Terms of Social, Economic and Environmental Aspects: The Case of Wałbrzych Region (Poland). Energies, 14(15), 4562.
https://doi.org/10.3390/en14154562 - IMGW-PIB. (2024). Dane publiczne. Pobrano 21 grudzień 2024, z
https://danepubliczne.imgw.pl/en - Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Ośródka, L., Krajny, E., Błaszczak, B., & Mathews, B. (2014). Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health, 7(1), 41–58.
https://doi.org/10.1007/s11869-013-0222-y - Sówka, I., Chlebowska-Styś, A., Pachurka, Ł., & Rogula-Kozłowska, W. (2018). Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): First studies in Poznań (Poland). Archives of Environmental Protection, 44(4), 86–95.
https://doi.org/10.24425/aep.2018.122305 - GIOŚ. (2025). Portal Jakość Powietrza. Pobrano 16 luty 2025, z
https://powietrze.gios.gov.pl/pjp/home - POLSA. (2022, luty 4). Nowe mapy pokrycia terenu i ortofotomapa udostępnione na geoportalu. Pobrano 5 wrzesień 2022, z
https://polsa.gov.pl/wydarzenia/nowe-mapy-pokrycia-terenu-i-ortofotomapa-udostepnione-na-geoportalu/ - GUGiK. (2025). Download service (WCS). geoportal.gov.pl. Pobrano 7 styczeń 2025, z Ms. Coco Geng
- Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., … Schauer, P. (2020). Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing, 12(21), 3523.
https://doi.org/10.3390/rs12213523 - POLSA. (2024). Mapa pokrycia terenu. Baza wiedzy. Pobrano 21 grudzień 2024, z
https://nsisplatforma.polsa.gov.pl/baza-wiedzy/produkty-satelitarne/mpt - QGIS Development Team. (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. ver 3.22 Białowieża. Pobrano z
http://qgis.osgeo.org - GRETL. (2024, grudzień 12). gretl. Pobrano 21 grudzień 2024, z
https://gretl.sourceforge.net/ - GIOŚ. (2023). Portal Jakość Powietrza GIOŚ. Pobrano 30 wrzesień 2024, z
http://powietrze.gios.gov.pl/pjp/home - GUGiK. (2022). View services (WMS and WMTS). geoportal.gov.pl. Pobrano 11 październik 2022, z
https://www.geoportal.gov.pl/uslugi/usluga-przegladania-wms - Główny Urząd Geodezji i Kartografii. (2022, wrzesień). Usługi pobierania WFS. geoportal.gov.pl. Pobrano z
https://www.geoportal.gov.pl/uslugi/usluga-pobierania-wfs - Al-Hemoud, A., Al-Khayat, A., Al-Dashti, H., Li, J., Alahmad, B., & Koutrakis, P. (2021). PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates. Environmental Challenges, 5, 100215.
https://doi.org/10.1016/j.envc.2021.100215 - Bukowski, J., & Van Den Heever, S. C. (2022). The Impact of Land Surface Properties on Haboobs and Dust Lofting. Journal of the Atmospheric Sciences, 79(12), 3195–3218.
https://doi.org/10.1175/JAS-D-22-0001.1 - Raupach, M., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 19(2), 93–112.
https://doi.org/10.1016/S1364-8152(03)00113-0 - Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M. E., Zheng, T., … Kucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research: Atmospheres, 118(2), 871–886.
https://doi.org/10.1029/2012JD017907 - Garcia-Carreras, L., Marsham, J. H., Stratton, R. A., & Tucker, S. (2021). Capturing convection essential for projections of climate change in African dust emission. npj Climate and Atmospheric Science, 4(1), 44.
https://doi.org/10.1038/s41612-021-00201-x - Qi, S., Ren, X., Dang, X., & Meng, Z. (2023). Mechanisms of dust emissions from lakes during different drying stages in a semi-arid grassland in northern China. Frontiers in Environmental Science, 10, 1110679.
https://doi.org/10.3389/fenvs.2022.1110679 - Nejad, M. T., Ghalehteimouri, K. J., Talkhabi, H., & Dolatshahi, Z. (2023). The relationship between atmospheric temperature inversion and urban air pollution characteristics: a case study of Tehran, Iran. Discover Environment, 1(1), 17.
https://doi.org/10.1007/s44274-023-00018-w - Staehle, C., Mayer, M., Kirchsteiger, B., Klaus, V., Kult-Herdin, J., Schmidt, C., … Rieder, H. E. (2022). Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020. Air Quality, Atmosphere & Health, 15(11), 1993–2007.
https://doi.org/10.1007/s11869-022-01232-w - Yavuz, V. (2024). Unveiling the impact of temperature inversions on air quality: a comprehensive analysis of polluted and severe polluted days in Istanbul. Acta Geophysica.
https://doi.org/10.1007/s11600-024-01417-0 - Lagmiri, S., & Dahech, S. (2024). Temperature Inversion and Particulate Matter Concentration in the Low Troposphere of Cergy-Pontoise (Parisian Region). Atmosphere, 15(3), 349.
https://doi.org/10.3390/atmos15030349 - Thomsen, D., Iversen, E. M., Skønager, J. T., Luo, Y., Li, L., Roldin, P., … Glasius, M. (2024). The effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of 3 - carene. Environmental Science: Atmospheres, 4(1), 88–103.
https://doi.org/10.1039/D3EA00128H - Deng, Y., Inomata, S., Sato, K., Ramasamy, S., Morino, Y., Enami, S., & Tanimoto, H. (2021). Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system. Atmospheric Chemistry and Physics, 21(8), 5983–6003.
https://doi.org/10.5194/acp-21-5983-2021 - US EPA. (1995). AP-42: Compilation of Air Pollutant Emission Factors.
- Jandacka, D., Durcanska, D., Nicolanska, M., & Holubcik, M. (2024). Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire, 7(4), 150.
https://doi.org/10.3390/fire7040150 - Salva, J., Poništ, J., Rasulov, O., Schwarz, M., Vanek, M., & Sečkár, M. (2023). The impact of heating systems scenarios on air pollution at selected residential zone: a case study using AERMOD dispersion model. Environmental Sciences Europe, 35(1), 91.
https://doi.org/10.1186/s12302-023-00798-1 - Senyel Kurkcuoglu, M. A., & Zengin, B. N. (2021). Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating. Sustainability, 13(19), 10870.
https://doi.org/10.3390/su131910870 - Wang, F., Carmichael, G. R., Wang, J., Chen, B., Huang, B., Li, Y., … Gao, M. (2022). Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing. Atmospheric Chemistry and Physics, 22(20), 13341–13353.
https://doi.org/10.5194/acp-22-13341-2022 - Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., … Zhang, S. (2021). PM2.5 Influence on Urban Heat Island (UHI) Effect in Beijing and the Possible Mechanisms. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD035227.
https://doi.org/10.1029/2021JD035227 - Rao, V. L. (2014). Effects of Urban Heat Island on Air pollution Concentrations. Int.J.Curr.Microbiol.App.Sci. Pobrano z
https://www.ijcmas.com/vol-3-10/Vennapu%20Lakshmana%20Rao.pdf?utm_source=chatgpt.com - Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Advances in Meteorology, 2020, 1–10.
https://doi.org/10.1155/2020/2398146 - Maboa, R., Yessoufou, K., Tesfamichael, S., & Shiferaw, Y. A. (2022). Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes. Scientific Reports, 12(1), 17467.
https://doi.org/10.1038/s41598-022-22558-6 - Olszowski, T. (2016). Changes in PM10 concentration due to large-scale rainfall. Arabian Journal of Geosciences, 9(2), 160.
https://doi.org/10.1007/s12517-015-2163-2 - Widziewicz, K., Rogula-Kozłowska, W., Rogula-Kopiec, P., Majewski, G., & Loska, K. (2017). PM1 and PM1-Bound Metals During Dry and Wet Periods: Ambient Concentration and Health Effects. Environmental Engineering Science, 34(5), 312–320.
https://doi.org/10.1089/ees.2016.0202 - Won, W.-S., Oh, R., Lee, W., Kim, K.-Y., Ku, S., Su, P.-C., & Yoon, Y.-J. (2020). Impact of Fine Particulate Matter on Visibility at Incheon International Airport, South Korea. Aerosol and Air Quality Research, 1048–1061.
https://doi.org/10.4209/aaqr.2019.03.0106 - Maurer, M., Klemm, O., Lokys, H. L., & Lin, N.-H. (2019). Trends of Fog and Visibility in Taiwan: Climate Change or Air Quality Improvement? Aerosol and Air Quality Research, 19(4), 896–910.
https://doi.org/10.4209/aaqr.2018.04.0152 - Majewski, G., Szeląg, B., Mach, T., Rogula-Kozłowska, W., Anioł, E., Bihałowicz, J., … Bihałowicz, J. S. (2021). Predicting the Number of Days With Visibility in a Specific Range in Warsaw (Poland) Based on Meteorological and Air Quality Data. Frontiers in Environmental Science, 9, 623094.
https://doi.org/10.3389/fenvs.2021.623094 - Majewski, G., Szeląg, B., Rogula-Kozłowska, W., Rogula-Kopiec, P., Brandyk, A., Rybak, J., … Klik, B. (2024). Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factors. Scientific Reports, 14(1), 16732.
https://doi.org/10.1038/s41598-024-67576-8 - Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T., & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure. Waste Management, 32(12), 2456–2468.
https://doi.org/10.1016/j.wasman.2012.06.005 - Yang, J., Li, X., Wang, W., Chai, H., An, M., & Dai, Q. (2024). The Mechanism of Dust Transportation Based on Wind Tunnel Experiments and Numerical Simulations. Water, 16(7), 1006.
https://doi.org/10.3390/w16071006 - Bihałowicz, J., Rogula-Kozłowska, W., Gromek, P., & Bihałowicz, J. S. (2024). What is the actual composition of specific land cover? An evaluation of the accuracy at a national scale – Remote sensing in comparison to topographic land cover. Remote Sensing Applications: Society and Environment, 36, 101319.
https://doi.org/10.1016/j.rsase.2024.101319 - Klejnowski, K., Krasa, A., Rogula-Kozłowska, W., & Błaszczak, B. (2013). Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) Measurements. The Scientific World Journal, 2013, 1–13.
https://doi.org/10.1155/2013/539568 - Rybak, J., Wróbel, M., Stefan Bihałowicz, J., & Rogula-Kozłowska, W. (2020). Selected Metals in Urban Road Dust: Upper and Lower Silesia Case Study. Atmosphere, 11(3), 290.
https://doi.org/10.3390/atmos11030290 - Edwards, R., Karnani, S., Fisher, E. M., Johnson, M., Naeher, L., Smith, K. R., & Morawska, L. (2014). Review 2: emissions of health-damaging pollutants from household stoves. WHO Indoor Air Quality Guidelines: Household fuel Combustion.
- Martins, N. R., & Carrilho Da Graça, G. (2023). Health effects of PM2.5 emissions from woodstoves and fireplaces in living spaces. Journal of Building Engineering, 79, 107848.
https://doi.org/10.1016/j.jobe.2023.107848 - Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N., & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece). Waste Management, 30(11), 2058–2064.
https://doi.org/10.1016/j.wasman.2010.05.025 - Brown, A., Barrett, J. E. S., Robinson, H., & Potgieter-Vermaak, S. (2015). Risk assessment of exposure to particulate output of a demolition site. Environmental Geochemistry and Health, 37(4), 675–687.
https://doi.org/10.1007/s10653-015-9747-3 - Azarmi, F., & Kumar, P. (2016). Ambient exposure to coarse and fine particle emissions from building demolition. Atmospheric Environment, 137, 62–79.
https://doi.org/10.1016/j.atmosenv.2016.04.029 - Marando, F., Salvatori, E., Fusaro, L., & Manes, F. (2016). Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests, 7(7), 150.
https://doi.org/10.3390/f7070150 - Pace, R., & Grote, R. (2020). Deposition and Resuspension Mechanisms Into and From Tree Canopies: A Study Modeling Particle Removal of Conifers and Broadleaves in Different Cities. Frontiers in Forests and Global Change, 3, 26.
https://doi.org/10.3389/ffgc.2020.00026 - Popek, R., Łukowski, A., & Karolewski, P. (2017). Particulate matter accumulation – further differences between native Prunus padusand non-native P. serotina. Dendrobiology, 78, 85–95.
https://doi.org/10.12657/denbio.078.009 - Trees Improve Air Quality | Edmond, OK - Official Website. (b.d.). Pobrano 8 styczeń 2025, z
https://www.edmondok.gov/1234/Trees-Improve-Air-Quality - Kivimäenpää, M., Riikonen, J., Valolahti, H., Elina, H., Holopainen, J. K., & Holopainen, T. (2022). Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. Tree Physiology, 42(8), 1570–1586.
https://doi.org/10.1093/treephys/tpac019 - Celedon, J. M., & Bohlmann, J. (2019). Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytologist, 224(4), 1444–1463.
https://doi.org/10.1111/nph.15984 - Maison, A., Lugon, L., Park, S.-J., Baudic, A., Cantrell, C., Couvidat, F., … Sartelet, K. (2024). Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling. Atmospheric Chemistry and Physics, 24(10), 6011–6046.
https://doi.org/10.5194/acp-24-6011-2024 - Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., & Butler, T. M. (2017). Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environmental Science & Technology, 51(11), 6120–6130.
https://doi.org/10.1021/acs.est.6b06514 - Gu, S., Guenther, A., & Faiola, C. (2021). Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environmental Science & Technology, 55(18), 12191–12201.
https://doi.org/10.1021/acs.est.1c01481 - Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., … Rinnan, R. (2020). Origin of volatile organic compound emissions from subarctic tundra under global warming. Global Change Biology, 26(3), 1908–1925.
https://doi.org/10.1111/gcb.14935 - Thao, N., Yu, X., & Zhang, H. (2014, kwiecień 4). Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Epicuticular Waxes of Urban Forest Species in Summer and Fall in Beijing, China. SSRN Scholarly Paper, Rochester, NY: Social Science Research Network. Pobrano z
https://papers.ssrn.com/abstract=2573647 - Gao, G., Sun, F., Thanh Thao, N. T., Lun, X., & Yu, X. (2015). Different Concentrations of TSP, PM10, PM2.5, and PM1 of Several Urban Forest Types in Different Seasons. Polish Journal of Environmental Studies, 24(6), 2387–2395.
https://doi.org/10.15244/pjoes/59501 - Yang, C., Geng, Y., Fu, X. Z., Coulter, J. A., & Chai, Q. (2020). The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy, 10(5), 732.
https://doi.org/10.3390/agronomy10050732 - Yang, Y., Luo, Z., Wei, Z., Zhao, J., Lu, T., Fu, T., & Tang, S. (2024). Combined use of chemical dust suppressant and herbaceous plants for tailings dust control. Environmental Geochemistry and Health, 46(9), 329.
https://doi.org/10.1007/s10653-024-02119-8 - Janhäll, S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmospheric Environment, 105, 130–137.
https://doi.org/10.1016/j.atmosenv.2015.01.052 - Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586–596.
https://doi.org/10.1016/j.ecolind.2016.02.029