Have a personal or library account? Click to login
Selected Land Cover Factors as a Determinant of Differences in Particulate Matter Concentrations – A Case Study of Warsaw, Poland Cover

Selected Land Cover Factors as a Determinant of Differences in Particulate Matter Concentrations – A Case Study of Warsaw, Poland

Open Access
|May 2025

References

  1. Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air – Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317–327. https://doi.org/10.1016/j.atmosenv.2015.08.057
  2. Birinci, E., Deniz, A., & Özdemir, E. T. (2023). The relationship between PM10 and meteorological variables in the mega city Istanbul. Environmental Monitoring and Assessment, 195(2), 304. https://doi.org/10.1007/s10661-022-10866-3
  3. Girotti, C., Fernando Kowalski, L., Silva, T., Correia, E., R. Prata Shimomura, A., Akira Kurokawa, F., & Lopes, A. (2025). Air pollution Dynamics: The role of meteorological factors in PM10 concentration patterns across urban areas. City and Environment Interactions, 25, 100184. https://doi.org/10.1016/j.cacint.2024.100184
  4. Kirešová, S., & Guzan, M. (2022). Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng, 3(3), 343–363. https://doi.org/10.3390/eng3030025
  5. Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77(1–2), 35–48. https://doi.org/10.1007/s10874-020-09401-w
  6. Lu, H., & Fang, G. (2002). Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan. The Science of The Total Environment, 298(1–3), 119–130. https://doi.org/10.1016/S0048-9697(02)00164-X
  7. United States Geological Survey. (b.d.). Annual National Land Cover Database (NLCD) Collection 1 Products. U.S. Geological Survey. https://doi.org/10.5066/P94UXNTS
  8. Probeck, M., Ruiz, I., Ramminger, G., Fourie, C., Maier, P., Ickerott, M., … Dufourmont, H. (2021). CLC+ Backbone: Set the Scene in Copernicus for the Coming Decade. W 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (s. 2076–2079). Zaprezentowano na 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. https://doi.org/10.1109/IGARSS47720.2021.9553252
  9. Xian, G. (2007). Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24), 5427–5445. https://doi.org/10.1080/01431160701227653
  10. Tao, Z., Santanello, J. A., Chin, M., Zhou, S., Tan, Q., Kemp, E. M., & Peters-Lidard, C. D. (2013). Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF) model study. Atmospheric Chemistry and Physics, 13(13), 6207–6226. https://doi.org/10.5194/acp-13-6207-2013
  11. Yang, W., & Jiang, X. (2021). Evaluating the influence of land use and land cover change on fine particulate matter. Scientific Reports, 11(1), 17612. https://doi.org/10.1038/s41598-021-97088-8
  12. Lu, Y., Yang, X., Wang, H., Jiang, M., Wen, X., Zhang, X., & Meng, L. (2023). Exploring the effects of land use and land cover changes on meteorology and air quality over Sichuan Basin, southwestern China. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1131389
  13. Yu, Y. T., Xiang, S., Li, R., Zhang, S., Zhang, K. M., Si, S., … Wu, Y. (2022). Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoring. The Science of the Total Environment, 829, 154478. https://doi.org/10.1016/j.scitotenv.2022.154478
  14. GUS. (2024, lipiec 22). Powierzchnia i ludność w przekroju terytorialnym w 2024 roku. stat.gov.pl. Access 21.12.2024, from https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/powierzchnia-i-ludnosc-w-przekroju-terytorialnym-w-2024-roku,7,21.html
  15. Badyda, A., Krawczyk, P., Bihałowicz, J. S., Bralewska, K., Rogula-Kozłowska, W., Majewski, G., … Rogulski, M. (2020). Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers Emissions. Energies, 13(23), 6245. https://doi.org/10.3390/en13236245
  16. GDDKiA. (2021). General Traffic Measurement (GPR) 2020/2021. Access 24.09.2023, from https://www.gov.pl/web/gddkia/generalny-pomiar-ruchu-20202021
  17. Bihałowicz, J. S., Rogula-Kozłowska, W., Rogula-Kopiec, P., Świsłowski, P., Rajfur, M., & Olszowski, T. (2023). One-Year-Long, Comprehensive Analysis of PM Number and Mass Size Distributions in Warszawa (Poland). Ecological Chemistry and Engineering S, 30(4), 541–556. https://doi.org/10.2478/eces-2023-0047
  18. Miłek, D. (2018). Spatial differentiation in the social and economic development level in Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 487–507.
  19. Raszka, B., Dzieżyc, H., & Hełdak, M. (2021). Assessment of the Development Potential of Post-Industrial Areas in Terms of Social, Economic and Environmental Aspects: The Case of Wałbrzych Region (Poland). Energies, 14(15), 4562. https://doi.org/10.3390/en14154562
  20. IMGW-PIB. (2024). Dane publiczne. Pobrano 21 grudzień 2024, z https://danepubliczne.imgw.pl/en
  21. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Ośródka, L., Krajny, E., Błaszczak, B., & Mathews, B. (2014). Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health, 7(1), 41–58. https://doi.org/10.1007/s11869-013-0222-y
  22. Sówka, I., Chlebowska-Styś, A., Pachurka, Ł., & Rogula-Kozłowska, W. (2018). Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): First studies in Poznań (Poland). Archives of Environmental Protection, 44(4), 86–95. https://doi.org/10.24425/aep.2018.122305
  23. GIOŚ. (2025). Portal Jakość Powietrza. Pobrano 16 luty 2025, z https://powietrze.gios.gov.pl/pjp/home
  24. POLSA. (2022, luty 4). Nowe mapy pokrycia terenu i ortofotomapa udostępnione na geoportalu. Pobrano 5 wrzesień 2022, z https://polsa.gov.pl/wydarzenia/nowe-mapy-pokrycia-terenu-i-ortofotomapa-udostepnione-na-geoportalu/
  25. GUGiK. (2025). Download service (WCS). geoportal.gov.pl. Pobrano 7 styczeń 2025, z Ms. Coco Geng
  26. Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., … Schauer, P. (2020). Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing, 12(21), 3523. https://doi.org/10.3390/rs12213523
  27. POLSA. (2024). Mapa pokrycia terenu. Baza wiedzy. Pobrano 21 grudzień 2024, z https://nsisplatforma.polsa.gov.pl/baza-wiedzy/produkty-satelitarne/mpt
  28. QGIS Development Team. (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. ver 3.22 Białowieża. Pobrano z http://qgis.osgeo.org
  29. GRETL. (2024, grudzień 12). gretl. Pobrano 21 grudzień 2024, z https://gretl.sourceforge.net/
  30. GIOŚ. (2023). Portal Jakość Powietrza GIOŚ. Pobrano 30 wrzesień 2024, z http://powietrze.gios.gov.pl/pjp/home
  31. GUGiK. (2022). View services (WMS and WMTS). geoportal.gov.pl. Pobrano 11 październik 2022, z https://www.geoportal.gov.pl/uslugi/usluga-przegladania-wms
  32. Główny Urząd Geodezji i Kartografii. (2022, wrzesień). Usługi pobierania WFS. geoportal.gov.pl. Pobrano z https://www.geoportal.gov.pl/uslugi/usluga-pobierania-wfs
  33. Al-Hemoud, A., Al-Khayat, A., Al-Dashti, H., Li, J., Alahmad, B., & Koutrakis, P. (2021). PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates. Environmental Challenges, 5, 100215. https://doi.org/10.1016/j.envc.2021.100215
  34. Bukowski, J., & Van Den Heever, S. C. (2022). The Impact of Land Surface Properties on Haboobs and Dust Lofting. Journal of the Atmospheric Sciences, 79(12), 3195–3218. https://doi.org/10.1175/JAS-D-22-0001.1
  35. Raupach, M., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 19(2), 93–112. https://doi.org/10.1016/S1364-8152(03)00113-0
  36. Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M. E., Zheng, T., … Kucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research: Atmospheres, 118(2), 871–886. https://doi.org/10.1029/2012JD017907
  37. Garcia-Carreras, L., Marsham, J. H., Stratton, R. A., & Tucker, S. (2021). Capturing convection essential for projections of climate change in African dust emission. npj Climate and Atmospheric Science, 4(1), 44. https://doi.org/10.1038/s41612-021-00201-x
  38. Qi, S., Ren, X., Dang, X., & Meng, Z. (2023). Mechanisms of dust emissions from lakes during different drying stages in a semi-arid grassland in northern China. Frontiers in Environmental Science, 10, 1110679. https://doi.org/10.3389/fenvs.2022.1110679
  39. Nejad, M. T., Ghalehteimouri, K. J., Talkhabi, H., & Dolatshahi, Z. (2023). The relationship between atmospheric temperature inversion and urban air pollution characteristics: a case study of Tehran, Iran. Discover Environment, 1(1), 17. https://doi.org/10.1007/s44274-023-00018-w
  40. Staehle, C., Mayer, M., Kirchsteiger, B., Klaus, V., Kult-Herdin, J., Schmidt, C., … Rieder, H. E. (2022). Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020. Air Quality, Atmosphere & Health, 15(11), 1993–2007. https://doi.org/10.1007/s11869-022-01232-w
  41. Yavuz, V. (2024). Unveiling the impact of temperature inversions on air quality: a comprehensive analysis of polluted and severe polluted days in Istanbul. Acta Geophysica. https://doi.org/10.1007/s11600-024-01417-0
  42. Lagmiri, S., & Dahech, S. (2024). Temperature Inversion and Particulate Matter Concentration in the Low Troposphere of Cergy-Pontoise (Parisian Region). Atmosphere, 15(3), 349. https://doi.org/10.3390/atmos15030349
  43. Thomsen, D., Iversen, E. M., Skønager, J. T., Luo, Y., Li, L., Roldin, P., … Glasius, M. (2024). The effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of 3 - carene. Environmental Science: Atmospheres, 4(1), 88–103. https://doi.org/10.1039/D3EA00128H
  44. Deng, Y., Inomata, S., Sato, K., Ramasamy, S., Morino, Y., Enami, S., & Tanimoto, H. (2021). Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system. Atmospheric Chemistry and Physics, 21(8), 5983–6003. https://doi.org/10.5194/acp-21-5983-2021
  45. US EPA. (1995). AP-42: Compilation of Air Pollutant Emission Factors.
  46. Jandacka, D., Durcanska, D., Nicolanska, M., & Holubcik, M. (2024). Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire, 7(4), 150. https://doi.org/10.3390/fire7040150
  47. Salva, J., Poništ, J., Rasulov, O., Schwarz, M., Vanek, M., & Sečkár, M. (2023). The impact of heating systems scenarios on air pollution at selected residential zone: a case study using AERMOD dispersion model. Environmental Sciences Europe, 35(1), 91. https://doi.org/10.1186/s12302-023-00798-1
  48. Senyel Kurkcuoglu, M. A., & Zengin, B. N. (2021). Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating. Sustainability, 13(19), 10870. https://doi.org/10.3390/su131910870
  49. Wang, F., Carmichael, G. R., Wang, J., Chen, B., Huang, B., Li, Y., … Gao, M. (2022). Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing. Atmospheric Chemistry and Physics, 22(20), 13341–13353. https://doi.org/10.5194/acp-22-13341-2022
  50. Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., … Zhang, S. (2021). PM2.5 Influence on Urban Heat Island (UHI) Effect in Beijing and the Possible Mechanisms. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD035227. https://doi.org/10.1029/2021JD035227
  51. Rao, V. L. (2014). Effects of Urban Heat Island on Air pollution Concentrations. Int.J.Curr.Microbiol.App.Sci. Pobrano z https://www.ijcmas.com/vol-3-10/Vennapu%20Lakshmana%20Rao.pdf?utm_source=chatgpt.com
  52. Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Advances in Meteorology, 2020, 1–10. https://doi.org/10.1155/2020/2398146
  53. Maboa, R., Yessoufou, K., Tesfamichael, S., & Shiferaw, Y. A. (2022). Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes. Scientific Reports, 12(1), 17467. https://doi.org/10.1038/s41598-022-22558-6
  54. Olszowski, T. (2016). Changes in PM10 concentration due to large-scale rainfall. Arabian Journal of Geosciences, 9(2), 160. https://doi.org/10.1007/s12517-015-2163-2
  55. Widziewicz, K., Rogula-Kozłowska, W., Rogula-Kopiec, P., Majewski, G., & Loska, K. (2017). PM1 and PM1-Bound Metals During Dry and Wet Periods: Ambient Concentration and Health Effects. Environmental Engineering Science, 34(5), 312–320. https://doi.org/10.1089/ees.2016.0202
  56. Won, W.-S., Oh, R., Lee, W., Kim, K.-Y., Ku, S., Su, P.-C., & Yoon, Y.-J. (2020). Impact of Fine Particulate Matter on Visibility at Incheon International Airport, South Korea. Aerosol and Air Quality Research, 1048–1061. https://doi.org/10.4209/aaqr.2019.03.0106
  57. Maurer, M., Klemm, O., Lokys, H. L., & Lin, N.-H. (2019). Trends of Fog and Visibility in Taiwan: Climate Change or Air Quality Improvement? Aerosol and Air Quality Research, 19(4), 896–910. https://doi.org/10.4209/aaqr.2018.04.0152
  58. Majewski, G., Szeląg, B., Mach, T., Rogula-Kozłowska, W., Anioł, E., Bihałowicz, J., … Bihałowicz, J. S. (2021). Predicting the Number of Days With Visibility in a Specific Range in Warsaw (Poland) Based on Meteorological and Air Quality Data. Frontiers in Environmental Science, 9, 623094. https://doi.org/10.3389/fenvs.2021.623094
  59. Majewski, G., Szeląg, B., Rogula-Kozłowska, W., Rogula-Kopiec, P., Brandyk, A., Rybak, J., … Klik, B. (2024). Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factors. Scientific Reports, 14(1), 16732. https://doi.org/10.1038/s41598-024-67576-8
  60. Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T., & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure. Waste Management, 32(12), 2456–2468. https://doi.org/10.1016/j.wasman.2012.06.005
  61. Yang, J., Li, X., Wang, W., Chai, H., An, M., & Dai, Q. (2024). The Mechanism of Dust Transportation Based on Wind Tunnel Experiments and Numerical Simulations. Water, 16(7), 1006. https://doi.org/10.3390/w16071006
  62. Bihałowicz, J., Rogula-Kozłowska, W., Gromek, P., & Bihałowicz, J. S. (2024). What is the actual composition of specific land cover? An evaluation of the accuracy at a national scale – Remote sensing in comparison to topographic land cover. Remote Sensing Applications: Society and Environment, 36, 101319. https://doi.org/10.1016/j.rsase.2024.101319
  63. Klejnowski, K., Krasa, A., Rogula-Kozłowska, W., & Błaszczak, B. (2013). Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) Measurements. The Scientific World Journal, 2013, 1–13. https://doi.org/10.1155/2013/539568
  64. Rybak, J., Wróbel, M., Stefan Bihałowicz, J., & Rogula-Kozłowska, W. (2020). Selected Metals in Urban Road Dust: Upper and Lower Silesia Case Study. Atmosphere, 11(3), 290. https://doi.org/10.3390/atmos11030290
  65. Edwards, R., Karnani, S., Fisher, E. M., Johnson, M., Naeher, L., Smith, K. R., & Morawska, L. (2014). Review 2: emissions of health-damaging pollutants from household stoves. WHO Indoor Air Quality Guidelines: Household fuel Combustion.
  66. Martins, N. R., & Carrilho Da Graça, G. (2023). Health effects of PM2.5 emissions from woodstoves and fireplaces in living spaces. Journal of Building Engineering, 79, 107848. https://doi.org/10.1016/j.jobe.2023.107848
  67. Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N., & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece). Waste Management, 30(11), 2058–2064. https://doi.org/10.1016/j.wasman.2010.05.025
  68. Brown, A., Barrett, J. E. S., Robinson, H., & Potgieter-Vermaak, S. (2015). Risk assessment of exposure to particulate output of a demolition site. Environmental Geochemistry and Health, 37(4), 675–687. https://doi.org/10.1007/s10653-015-9747-3
  69. Azarmi, F., & Kumar, P. (2016). Ambient exposure to coarse and fine particle emissions from building demolition. Atmospheric Environment, 137, 62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029
  70. Marando, F., Salvatori, E., Fusaro, L., & Manes, F. (2016). Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests, 7(7), 150. https://doi.org/10.3390/f7070150
  71. Pace, R., & Grote, R. (2020). Deposition and Resuspension Mechanisms Into and From Tree Canopies: A Study Modeling Particle Removal of Conifers and Broadleaves in Different Cities. Frontiers in Forests and Global Change, 3, 26. https://doi.org/10.3389/ffgc.2020.00026
  72. Popek, R., Łukowski, A., & Karolewski, P. (2017). Particulate matter accumulation – further differences between native Prunus padusand non-native P. serotina. Dendrobiology, 78, 85–95. https://doi.org/10.12657/denbio.078.009
  73. Trees Improve Air Quality | Edmond, OK - Official Website. (b.d.). Pobrano 8 styczeń 2025, z https://www.edmondok.gov/1234/Trees-Improve-Air-Quality
  74. Kivimäenpää, M., Riikonen, J., Valolahti, H., Elina, H., Holopainen, J. K., & Holopainen, T. (2022). Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. Tree Physiology, 42(8), 1570–1586. https://doi.org/10.1093/treephys/tpac019
  75. Celedon, J. M., & Bohlmann, J. (2019). Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytologist, 224(4), 1444–1463. https://doi.org/10.1111/nph.15984
  76. Maison, A., Lugon, L., Park, S.-J., Baudic, A., Cantrell, C., Couvidat, F., … Sartelet, K. (2024). Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling. Atmospheric Chemistry and Physics, 24(10), 6011–6046. https://doi.org/10.5194/acp-24-6011-2024
  77. Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., & Butler, T. M. (2017). Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environmental Science & Technology, 51(11), 6120–6130. https://doi.org/10.1021/acs.est.6b06514
  78. Gu, S., Guenther, A., & Faiola, C. (2021). Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environmental Science & Technology, 55(18), 12191–12201. https://doi.org/10.1021/acs.est.1c01481
  79. Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., … Rinnan, R. (2020). Origin of volatile organic compound emissions from subarctic tundra under global warming. Global Change Biology, 26(3), 1908–1925. https://doi.org/10.1111/gcb.14935
  80. Thao, N., Yu, X., & Zhang, H. (2014, kwiecień 4). Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Epicuticular Waxes of Urban Forest Species in Summer and Fall in Beijing, China. SSRN Scholarly Paper, Rochester, NY: Social Science Research Network. Pobrano z https://papers.ssrn.com/abstract=2573647
  81. Gao, G., Sun, F., Thanh Thao, N. T., Lun, X., & Yu, X. (2015). Different Concentrations of TSP, PM10, PM2.5, and PM1 of Several Urban Forest Types in Different Seasons. Polish Journal of Environmental Studies, 24(6), 2387–2395. https://doi.org/10.15244/pjoes/59501
  82. Yang, C., Geng, Y., Fu, X. Z., Coulter, J. A., & Chai, Q. (2020). The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy, 10(5), 732. https://doi.org/10.3390/agronomy10050732
  83. Yang, Y., Luo, Z., Wei, Z., Zhao, J., Lu, T., Fu, T., & Tang, S. (2024). Combined use of chemical dust suppressant and herbaceous plants for tailings dust control. Environmental Geochemistry and Health, 46(9), 329. https://doi.org/10.1007/s10653-024-02119-8
  84. Janhäll, S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmospheric Environment, 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052
  85. Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586–596. https://doi.org/10.1016/j.ecolind.2016.02.029
DOI: https://doi.org/10.2478/acee-2025-0012 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 161 - 174
Submitted on: Jan 15, 2025
|
Accepted on: Mar 20, 2025
|
Published on: May 10, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jan Stefan Bihałowicz, Paweł Zając, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.