References
- Kassenberg, A., Szymalski, W. & Świerkula, E. (2019). Poradnik adaptacji miasta do zmiany klimatu. Warszawa: Instytut na rzecz Ekorozwoju.
- Deuster, C., Kajander, N., Muench, S., Natale, F., Nedee, A., Scapolo, F., Ueffing, P., & Vesnic Alujevic, L. (2023). Demography and Climate Change. EUR 31512 EN. Luxembourg: Publications Office of the European Union.
- Koch, F. (2021). Cities as transnational climate change actors: applying a Global South perspective. Third World Quaterly, 42(9), 2055–2073.
- Knowlton, K., Rosenthal, J. E., Hogrefe, C., & Lynn, B. (2004). Assessing ozon-related health impacts under a changing climate. Environmental Health Perspectives, 112(15), 1557–1563.
- Januchta-Szostak, A. (2021). Klimat miasta: specyfi-ka, zagrożenia, adaptacja. Przegląd Komunalny, 9(360), 72–76.
- Przesmycka, N., Kwiatkowski, B. & Kozak, M. (2022). The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland. Energies, 15(6504), [1–26].
- Battista, G., de Lieto Vollaro, R. & Zinzi, M. (2019). Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Solar Energy, 180, 608–621.
- Chen, L. & Ng, E. (2013). Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: A case study in Hong Kong. Architectural Science Review, 56(4), 297–305.
- Alves, F. M., Gonçalves, A. & del Caz Enjuto, M. R. (2022). The Use of Envi-Met for the Assessment of Nature-Based Solutions’ Potential Benefits in Industrial Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 7(85), [1–22].
- Bochenek, A. & Klemm, K. (2020). Assessment of human thermal comfort in street canyons. An example of typical structures (Lodz, Poland). Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 9(1), 69–76.
- Degórska, B. (2014). Wrażliwość i adaptacja dużych miast do zmian klimatu w kontekście wzrostu temper-atury powietrza. Biuletyn Polska Akademia Nauk, 254, 27–46.
- Januchta-Szostak, A. (2020). Błękitno-zielona infra-struktura jako narzędzie adaptacji miast do zmian kli-matu i zagospodarowania wód opadowych. Zeszyty Naukowe Politechniki Poznańskiej. Architektura, Urbanistyka, Architektura Wnętrz, 3, 37-74.
- Herath, H. M. P. I. K., Halwatura, R. U., & Jayasinghe, G. Y. (2018). Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening, 29, 212–222.
- Hoelscher, M., Nehls, T., Jänicke, B., & Wessolek, G. (2016). Quantifying cooling effects of façade greening: Shading, transpiration and insulation. Energy and Buildings, 114, 283-290.
- Li, Z., Chow, D. H. C., Yao, J., Zheng, X., & Zhao, W. (2019). The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy and Buildings, 196, 227–239.
- Aboelata, A., & Sadoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 168, 1–13.
- Zhang, L., Deng, Z., Liang, L., Zhang, Y., Meng, Q., Wang, J., & Santamouris, M. (2019). Thermal behavior of a vertical green façade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 204(109502), [1–14].
- Gargari, C., Bibbiani, C., Fantozzi, F., & Campiotti, C. A. (2016). Simulation of the thermal behaviour of a building retrofitted with a green roof: optimization of energy efficiency with reference to Italian climatic zones. Agriculture and Agricultural Science Procedia, 8, 628-636.
- Shaheen, A. M. A., Sabry, H. M. K., & El Dessoqy Faggal, A. A. (2020). Double Skin Green Façade in Workplace for Enhancing Thermal Performance in Greater Cairo. Engineering Research Journal, 168, A1-A12.
- Matzarakis, A., & Mayer, H. (1996). Another Kind of Environmental Stress: Thermal Stress. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Newsletters, 18, 7–10.
- Ng, E., Chen, L., Wang, Y. & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47, 256–271.
- Acero, J. A., Koh, E. J. Y., Li, X. X., Ruefenacht, L. A., Pignatta, G. & Norford, L. K. (2019). Thermal impact of the orientation and height of vertical greenery on pedestrian in a tropical area. Building Simulation, 12, 973-984.
- Sözen, İ. & Oral, G. K. (2019). Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustainable Cities and Society, 48(101398), [1–15].
- Middel, A., Chhetri, N. & Quay, R. (2015). Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1), 178–186.
- Nastran, M., Kobal, M. & Eler, K. (2019). Urban heat islands in relation to green land use in European cities. Urban Forestry & Urban Greening, 37, 33–41.
- Eumorfopoulou, E. & Aravantinos, D. (1998). The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings, 27, 29–36.
- Wong, N. H., Chen, Y., Ong, C. L. & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Energy and Buildings, 35, 35–364.
- Saiz, S., Kennedy, K., Bass, B. & Pressnail, K. (2006). Comparative Life Cycle Assessment of Standard and Green Roofs. Environmental Science & Technology, 40, 4312–4316.
- Morakinyo, T. E. & Lam, Y. F. (2016). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s microclimate and thermal comfort. Buildings and Environment, 103, 262–275.
- Tsoka, S., Leduc, T. & Rodler, A. (2021). Assessing the effects of urban trees on building cooling energy needs: The role of foliage density and planting pattern. Sustainable Cities and Society, 65(102633), [1–16].
- Plan adaptacji do zmian klimatu miasta Łodzi do roku 2030.
- Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and Buildings, 33, 719–729.
- Ragab, A., & Abdelrady, A. (2020). Impact of green roofs on energy demand for cooling in Egyptian buildings. Applied Sciences, 12(14), 1–13.
- Assimakopoulos, M. N., De Masi, R. F., Rossi, F., Papadaki, D., & Ruggiero, S. (2020). Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens. Sustainability, 12(3772), [1–23].
- Mabdeh, S., Al Radaideh, T., & Hiyari, M. (2020). Enhancing thermal comfort of residential buildings through dual functional passive system (solar-wall). Journal of Green Building, 16(2), 139–161.
- Portal REWITALIZACJA (2024). Stary Rynek – Rewitalizacja. Retrieved from: https://rewitalizacja.uml.lodz.pl/dzialania/4-okolice-placu-wolnosci-i-starego-rynku/stary-rynek/
- Białas, K. (2023). Wkrótce ruszają prace! Stary Rynek w Łodzi po remoncie będzie zielony! Retrieved from: https://www.whitemad.pl/stary-rynek-w-lodzi-miasto-zmienia-projekt-mniej-betonu-wiecej-zieleni/
- Rewitalizacja Starego Rynku w Łodzi. Odkopano ponad tysiąc artefaktów (2023). Retrieved from: https://turystyka.wp.pl/rewitalizacja-starego-rynku-w-lodzi-odkopano-ponad-tysiac-artefaktow-6804424151059168a
- Skanska-informacja prasowa (2023). Skanska zakończyła przebudowę placu Dąbrowskiego w Łodzi. Retrieved from: https://www.skanska.pl/o-skanska/media/informacje-prasowe/48649/Skanska-zakonczyla-przebudowe-placu-Dabrowskiego-w-Lodzi/
- Rubaszewska, M. (2023). Tak będzie wyglądał plac Dąbrowskiego w Łodzi. Retrived from: https://expressilustrowany.pl/tak-bedzie-wygladal-plac-dabrowskiego-w-lodzi-wizualizacje/ar/c1-17174793
- https://earth.google.com/
- ŁÓDŹ BUDUJE, ZIELONA ŁÓDŹ (2022). Jak zmieni się Plac Dąbrowskiego po remoncie? Wybierz najlepszy projekt!. Retrived from: https://lodz.pl/artykul/jak-zmieni-sie-plac-dabrowskiego-po-remoncie-wybierz-najlepszy-pro-jekt-sonda-54000/
- Bochenek, A. & Klemm, K. (2018). Assessment of the impact of spatial development changes on thermal comfort experienced by man in the external environment. IOP Conference Series: Materials Science and Engineering, 415(012022), [1–8].
- Bochenek A. (2022). The Influence of Urban Forms and Adaptation Strategies on Microclimate and Human Thermal Comfort (PhD thesis, Lodz University of Technology). Poland, Lodz.
- ASHRAE (2017). Standard 55 – Thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air Conditioning Engineers. USA, GA, Atlanta.
- Sudoł-Szkopińska, I. & Chojnacka, A. (2007). Określenie warunków komfortu termicznego w pomieszczeniach za pomocą wskaźników PMV i PPD. Bezpieczeństwo pracy, 5, 19–23.
- Fanger, P. O. (1973). Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine, 30, 313–324.
- De Freitas, C. R. & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 61(3), 487–512.
- Deb, C. & Alur, R. (2010). The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. International Journal of Engineering Science and Technology, 2(7), 2825–2828.
- Basarin, B., Lukić, T. & Matzarakis, A. (2020). Review of biometeorology of heatwaves and warm extremes in Europe. Atmosphere, 11(1276), 1–21.