Have a personal or library account? Click to login
Parameters of Building Geometry that Affect Wind Flow With Regards to the Possibilities for their Implementation in Urban and Architectural Design in Poland Cover

Parameters of Building Geometry that Affect Wind Flow With Regards to the Possibilities for their Implementation in Urban and Architectural Design in Poland

Open Access
|Dec 2024

References

  1. Zielonko-Jung, K. (2020). Analysis of wind conditions around a building development as a part of its form designing process, a case study. Architecture, Civil Engineering, Environment, 12(4), 51–58. https://doi.org/10.21307/acee-2019-051
  2. Jo, S. J., Jones, J., & Grant, E. (2018). Trends in the application of CFD for architectural design.
  3. Badach, J., & Li, W. (2021). Estimating the impact of the urban structure on air quality and its practical implications: Historical perspective and a review of recent trends.
  4. Wei, D., Hu, X., Chen, Y., Li, B., & Chen, H. (2021). An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment. Atmosphere, 12(2), 234. https://doi.org/10.3390/atmos12020234
  5. Krautheim, M., Pasel, R., Pfeiffer, S., & Schultz-Granberg, J. (Eds.). (2014). City and wind: Climate as an architectural instrument. DOM publ.
  6. Dz. U. 2003 Nr 80 poz. 717 USTAWA z dnia 27 marca 2003 r. O planowaniu i zagospodarowaniu przestrzennym(ACT of 27 March 2003 on spatial planning and development).
  7. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781139016476
  8. Dz.U.2022.0.1225 t.j. – Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. W sprawie warunków technicznych, jakim powinny odpowiada ćbudynkii ich usytuowanie (Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions to be met by buildings and their location).
  9. Feng, W., Ding, W., Fei, M., Yang, Y., Zou, W., Wang, L., & Zhen, M. (2021). Effects of traditional block morphology on wind environment at the pedestrian level in cold regions of Xi’an, China. Environment, Development and Sustainability, 23(3), 3218–3235. https://doi.org/10.1007/s10668-020-00714-0
  10. Palusci, O., Monti, P., Cecere, C., Montazeri, H., & Blocken, B. (2022). Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Science of The Total Environment, 807, 150490. https://doi.org/10.1016/j.scitotenv.2021.150490
  11. Mei, S.-J., Hu, J.-T., Liu, D., Zhao, F.-Y., Li, Y., Wang, Y., & Wang, H.-Q. (2017). Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy and Buildings, 155, 324–338. https://doi.org/10.1016/j.enbuild.2017.09.019
  12. Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using largeeddy simulations. Building and Environment, 182, 107169. https://doi.org/10.1016/j.buildenv.2020.107169
  13. Yang, J., Shi, B., Zheng, Y., Shi, Y., & Xia, G. (2020). Urban form and air pollution disperse: Key indexes and mitigation strategies. Sustainable Cities and Society, 57, 101955. https://doi.org/10.1016/j.scs.2019.101955
  14. Wagner, Robert F. (1961). Zoning maps and resolution. The city of New York.
  15. Gandemer, J. (1978). Discomfort due to wind near buildings: Aerodynamic concepts (NBS TN 710-9; 0 ed., p. NBS TN 710-9). National Bureau of Standards. https://doi.org/10.6028/NBS.TN.710-9
  16. Kaseb, Z., Hafezi, M., Tahbaz, M., & Delfani, S. (2020). A framework for pedestrian-level wind conditions improvement in urban areas: CFD simulation and optimization. Building and Environment, 184, 107191. https://doi.org/10.1016/j.buildenv.2020.107191
  17. Ku, C.-A., & Tsai, H.-K. (2020). Evaluating the Influence of Urban Morphology on Urban Wind Environment Based on Computational Fluid Dynamics Simulation. ISPRS International Journal of Geo-Information, 9(6), 399. https://doi.org/10.3390/ijgi9060399
  18. Lin, Z., Yin, S., Liao, W., & Xiao, Y. (2023). Genetic Algorithm-Based Building Geometric Opening Configurations Optimization for Enhancing Ventilation Performance in the High-Density Urban District. 251–260. https://doi.org/10.52842/conf.caadria.2023.1.251
  19. Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198–206. https://doi.org/10.1016/j.buildenv.2008.02.008
  20. Adolphe, L. (2001). Modelling the link between built environment and urban climate : towards simplified indicators of the city environment.
  21. Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities – air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44(7), 1478–1488. https://doi.org/10.1016/j.buildenv.2008.06.013
  22. Hong Kong planning standards and guidelines. (2015). planning department the government of the Hong Kong special administrative region.
  23. An, K., Wong, S.-M., & Fung, J. C.-H. (2019). Exploration of sustainable building morphologies for effective passive pollutant dispersion within compact urban environments. Building and Environment, 148, 508–523. https://doi.org/10.1016/j.buildenv.2018.11.030
  24. Sustainable Building Design Guidelines. (2023). Buildings Departmen. APP-152
  25. Lau, K. K.-L., Ng, E., Ren, C., Ho, J. C.-K., Wan, L., Shi, Y., Zheng, Y., Gong, F., Cheng, V., Yuan, C., Tan, Z., & Wong, K. S. (2018). Defining the environmental performance of neighbourhoods in high-density cities. Building Research & Information, 46(5), 540–551. https://doi.org/10.1080/09613218.2018.1399583
  26. Elzeni, M., Elmokadem, A., & Badawy, N. (2021). Classification of Urban Morphology Indicators towards Urban Generation. Port-Said Engineering Research Journal, 0(0), 0–0. https://doi.org/10.21608/pserj.2021.91760.1135
  27. Wang, B., Cot, L. D., Adolphe, L., Geoffroy, S., & Sun, S. (2017). Cross indicator analysis between wind energy potential and urban morphology. Renewable Energy, 113, 989–1006. https://doi.org/10.1016/j.renene.2017.06.057
  28. Zhou, J., Liu, J., Xiang, S., Zhang, Y., Wang, Y., Ge, W., Hu, J., Wan, Y., Wang, X., Liu, Y., Ma, J., Wang, X., & Tao, S. (2022). Evaluation of the Street Canyon Level Air Pollution Distribution Pattern in a Typical City Block in Baoding, China. International Journal of Environmental Research and Public Health, 19(16), 10432. https://doi.org/10.3390/ijerph191610432
  29. Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. H. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101(1), 59–74. https://doi.org/10.1016/j.landurbplan.2011.01.004
  30. Yang, J., Jin, S., Xiao, X., Jin, C., Xia, J. (Cecilia), Li, X., & Wang, S. (2019). Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustainable Cities and Society, 47, 101487. https://doi.org/10.1016/j.scs.2019.101487
  31. Hussain, M. (1978). A study of the wind forces on low rise building arrays and their application to natural ventilation design methods.
  32. Jeong, S. J., & Andrews, M. J. (2002). Application of the k–e turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmospheric Environment.
  33. Sini, J.-F., Anquetin, S., & Mestayer, P. G. (1996). Pollutant dispersion and thermal effects in urban street canyons. Atmospheric Environment, 30(15), 2659–2677. https://doi.org/10.1016/1352-2310(95)00321-5
  34. Zajic, D., Fernando, H. J. S., Calhoun, R., Princevac, M., Brown, M. J., & Pardyjak, E. R. (2011). Flow and Turbulence in an Urban Canyon. Journal of Applied Meteorology and Climatology, 50(1), 203–223. https://doi.org/10.1175/2010JAMC2525.1
  35. Ramponi, R., Blocken, B., De Coo, L. B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152–166. https://doi.org/10.1016/j.buildenv.2015.04.018
  36. Yang, H., Lam, C. K. C., Lin, Y., Chen, L., Mattsson, M., Sandberg, M., Hayati, A., Claesson, L., & Hang, J. (2021). Numerical investigations of Re-independence and influence of wall heating on flow characteristics and ventilation in full-scale 2D street canyons. Building and Environment, 189, 107510. https://doi.org/10.1016/j.buildenv.2020.107510
  37. Yin, S., Lang, W., & Xiao, Y. (2019). The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustainable Cities and Society, 49, 101571. https://doi.org/10.1016/j.scs.2019.101571
  38. Hu, C.-B., Zhang, F., Gong, F.-Y., Ratti, C., & Li, X. (2020). Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 167, 106424. https://doi.org/10.1016/j.buildenv.2019.106424
  39. Chan, A. T., Au, W. T. W., & So, E. S. P. (2003). Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: Multiple canopies and canyons. Atmospheric Environment, 37(20), 2761–2772. https://doi.org/10.1016/S1352-2310(03)00252-8
  40. Hang, J., Li, Y., Sandberg, M., & Claesson, L. (2010). Wind conditions and ventilation in high-rise long street models. Building and Environment, 45(6), 1353–1365. https://doi.org/10.1016/j.buildenv.2009.11.019
  41. Hang, J., Sandberg, M., Li, Y., & Claesson, L. (2010). Flow mechanisms and flow capacity in idealized longstreet city models. Building and Environment, 45(4), 1042–1053. https://doi.org/10.1016/j.buildenv.2009.10.014
  42. Miao, C., Yu, S., Hu, Y., Zhang, H., He, X., & Chen, W. (2020). Review of methods used to estimate the sky view factor in urban street canyons. Building and Environment, 168, 106497. https://doi.org/10.1016/j.buildenv.2019.106497
  43. Yang, F., Qian, F., & Lau, S. S. Y. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70, 122–137. https://doi.org/10.1016/j.buildenv.2013.08.019
  44. Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., & He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime intra urban air temperature differentials in high rise, high density urban areas of Hong Kong: A GIS based simulation approach. International Journal of Climatology, 32(1), 121–136. https://doi.org/10.1002/joc.2243
  45. Erell, E., Pearlmutter, D., & Williamson, T. J. (2015). Urban microclimate: Designing the spaces between buildings (Fist issued in paperback). Earthscan from Routledge.
  46. Kurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., & Järvi, L. (2018). Ventilation and Air Quality in City Blocks Using Largeeddy Simulation—Urban Planning Perspective. Atmosphere, 9(2), 65. https://doi.org/10.3390/atmos9020065
  47. Poćwierz, M., & Zielonko-Jung, K. (2021). An analysis of wind conditions at pedestrian level in the selected types of multi-family housing developments. Environmental Fluid Mechanics, 21(1), 83–101. https://doi.org/10.1007/s10652-020-09763-5
  48. Wen, H., & Malki-Epshtein, L. (2018). A parametric study of the effect of roof height and morphology on air pollution dispersion in street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 175, 328–341. https://doi.org/10.1016/j.jweia.2018.02.006
  49. Takano, Y., & Moonen, P. (2013). On the influence of roof shape on flow and dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 123, 107–120. https://doi.org/10.1016/j.jweia.2013.10.006
  50. Kastner-Klein, P., Berkowicz, R., & Britter, R. (2004). The influence of street architecture on flow and dispersion in street canyons. Meteorology and Atmospheric Physics, 87(1–3). https://doi.org/10.1007/s00703-003-0065-4
  51. An, K., Wong, S.-M., & Fung, J. C.-H. (2019). Exploration of sustainable building morphologies for effective passive pollutant dispersion within compact urban environments. Building and Environment, 148, 508–523. https://doi.org/10.1016/j.buildenv.2018.11.030
  52. Ku, C.-A., & Tsai, H.-K. (2020). Evaluating the Influence of Urban Morphology on Urban Wind Environment Based on Computational Fluid Dynamics Simulation. ISPRS International Journal of Geo-Information, 9(6), 399. https://doi.org/10.3390/ijgi9060399
  53. Kubota, T., Miura, M., Tominaga, Y., & Mochida, A. (2008). Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(10), 1699–1708. https://doi.org/10.1016/j.buildenv.2007.10.015
  54. Lau, K. K.-L., Ng, E., Ren, C., Ho, J. C.-K., Wan, L., Shi, Y., Zheng, Y., Gong, F., Cheng, V., Yuan, C., Tan, Z., & Wong, K. S. (2018). Defining the environmental performance of neighbourhoods in high-density cities. Building Research & Information, 46(5), 540–551. https://doi.org/10.1080/09613218.2018.1399583
  55. Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using largeeddy simulations. Building and Environment, 182, 107169. https://doi.org/10.1016/j.buildenv.2020.107169
  56. Javanroodi, K., Mahdavinejad, M., & Nik, V. M. (2018). Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Applied Energy, 231, 714–746.
  57. Palusci, O., & Cecere, C. (2022). Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability, 14(7), 3948. https://doi.org/10.3390/su14073948
  58. Peng, Y., Gao, Z., & Ding, W. (2017). An Approach on the Correlation between Urban Morphological Parameters and Ventilation Performance. Energy Procedia, 142, 2884–2891. https://doi.org/10.1016/j.egypro.2017.12.412
  59. Park, C., Ha, J., & Lee, S. (2017). Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences. Sustainability, 9(8), 1338. https://doi.org/10.3390/su9081338
  60. Mittal, H., Sharma, A., & Gairola, A. (2018). A review on the study of urban wind at the pedestrian level around buildings. Journal of Building Engineering, 18, 154–163. https://doi.org/10.1016/j.jobe.2018.03.006
  61. Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. H. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101(1), 59–74. https://doi.org/10.1016/j.landurbplan.2011.01.004
  62. Ramponi, R., Blocken, B., De Coo, L. B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152–166. https://doi.org/10.1016/j.buildenv.2015.04.018
  63. Zhang, A., Gao, C., & Zhang, L. (2005). Numerical simulation of the wind field around different building arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 891–904. https://doi.org/10.1016/j.jweia.2005.09.001
  64. Adolphe, L. (2001). A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environment and Planning B: Planning and Design, 28(2), 183–200. https://doi.org/10.1068/b2631
  65. Behzadfar, M. (2017). GENERIC FLOWS OF SUSTAINABLE URBAN FORM: An Investigation On Integrated Interactions Between Energy And Information Flows In The Context Of Urban Form. The Case Of Isfahan.
  66. Afiq, W. M., Azwadi, C. S. N., & Saqr, K. M. (2012). Effects of buildings aspect ratio, wind speed and wind direction on flow structure and pollutant dispersion in symmetric street canyons: A review. International Journal of Mechanical and Materials Engineering, 7, 158–165.
  67. Chen, G., Charlie Lam, C. K., Wang, K., Wang, B., Hang, J., Wang, Q., & Wang, X. (2021). Effects of urban geometry on thermal environment in 2D street canyons: A scaled experimental study. Building and Environment, 198, 107916. https://doi.org/10.1016/j.buildenv.2021.107916
  68. Hamdan, D. M. A., & De Oliveira, F. L. (2019). The impact of urban design elements on microclimate in hot arid climatic conditions: Al Ain City, UAE. Energy and Buildings, 200, 86–103. https://doi.org/10.1016/j.enbuild.2019.07.028
  69. Ahmad, K., Khare, M., & Chaudhry, K. K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections—A review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697–717. https://doi.org/10.1016/j.jweia.2005.04.002
  70. Chan, A. T., So, E. S. P., & Samad, S. C. (2001). Strategic guidelines for street canyon geometry to achieve sustainable street air quality. Atmospheric Environment.
  71. Trindade Da Silva, F., Reis, N. C., Santos, J. M., Goulart, E. V., & Engel De Alvarez, C. (2021). The impact of urban block typology on pollutant dispersion. Journal of Wind Engineering and Industrial Aerodynamics, 210, 104524. https://doi.org/10.1016/j.jweia.2021.104524
  72. Matzarakis, A., & Matuschek, O. (2011). Sky view factor as a parameter in applied climatology rapid estimation by the SkyHelios model. Meteorologische Zeitschrift, 20(1), 39–45. https://doi.org/10.1127/0941-2948/2011/0499
  73. Ren, C., Cai, M., Li, X., Shi, Y., & See, L. (2020). Developing a rapid method for 3-dimensional urban morphology extraction using open-source data. Sustainable Cities and Society, 53, 101962. https://doi.org/10.1016/j.scs.2019.101962
  74. Peng, Y., Gao, Z., Buccolieri, R., Shen, J., & Ding, W. (2021). Urban ventilation of typical residential streets and impact of building form variation. Sustainable Cities and Society, 67, 102735. https://doi.org/10.1016/j.scs.2021.102735
  75. Zahid Iqbal, Q. M., & Chan, A. L. S. (2016). Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 101, 45–63. https://doi.org/10.1016/j.buildenv.2016.02.015
  76. Huang, Y., Lei, C., Liu, C.-H., Perez, P., Forehead, H., Kong, S., & Zhou, J. L. (2021). A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution, 280, 116971. https://doi.org/10.1016/j.envpol.2021.116971
  77. Nosek, Š., Kukačka, L., Kellnerová, R., Jurčáková, K., & Jaňour, Z. (2016). Ventilation Processes in a Three-Dimensional Street Canyon. Boundary-Layer Meteorology, 159(2), 259–284. https://doi.org/10.1007/s10546-016-0132-2
  78. Wejchert, K. (2010). Elementy kompozycji urbanistycznej. Arkady.
DOI: https://doi.org/10.2478/acee-2024-0030 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 83 - 98
Submitted on: Jul 29, 2024
Accepted on: Dec 14, 2024
Published on: Dec 31, 2024
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mariya -Veronika MOCHULSKA, Katarzyna ZIELONKO-JUNG, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.