References
- Zongjin, L. (2011). Advanced concrete technology. New Jersey: John Wiley and Sons Ltd. ISBN 9780470437438.
- De Schutter, G., Bartos, P. J., Domone, P., & Gibbs, J. (2008). Self-compacting concrete, (Vol. 288). Caithness: Whittles Publishing.
- Li, H., Yin, J., Yan, P., Sun, H., and Wan, Q. (2020). Experimental investigation on the mechanical properties of self-compacting concrete under uniaxial and trial stress. Materials, 13(8), 1830.
- Boukendakdji O, Kadri EH, Kenai S (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Constr. Build Mater. 34, 583–590.
- Zhang, X., Luo, Y., Wang, L., Zhang, J., Wu, W., & Yang, C. (2018). Flexural strengthening of damaged RC T-beams using self-compacting concrete jacketing under different sustaining loads. Construction and Building Materials, 172, 185–195. doi:10.1016/j.conbuildmat.2018.03.245.
- Chalioris, C. E., & Pourzitidis, C. N. (2012). Rehabilitation of shear-damaged reinforced concrete beams using self-compacting concrete jacketing. ISRN Civil Engineering, 816107. doi:10.5402/2012/816107.
- Sucharda, O., Brozovsky, J., & Mikolasek, D. (2014). Numerical modeling and bearing capacity of reinforced concrete beams. Key Engineering Materials, 281–284. doi:10.4028/www.scientific.net/KEM.577-578.281
- Czarnecki, S., Shariq, M., Nikoo, M., & Sadowski, L. (2021). An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement: Journal of the International Measurement Confederation, 172, 108951. doi:10.1016/j.measurement.2020.108951.
- Nicoara, A. I., Stoica, A. E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., & Vasile, B. S. (2020). End-of-life materials are used as supplementary cementitious materials in the concrete industry. Materials, 13, 1954. doi: 10.3390/ma13081954.
- EN British Standard. 450-1, Fly Ash for Concrete-Definition, Specifications, and Conformity Criteria. British Standards Institution; London, UK, 2012.
- Asteris, P. G., & Kolovos, K. G. (2019). Self-compacting concrete strength prediction using surrogate models. Neural Computing and Applications, 31(1), 409–424.
- Rajakarunakaran, S. A., Lourdu, A. R., Muthusamy, S., Panchal, H., Alrubaie, A. J., Jaber, M. M & Ali, S. H. M. (2022). Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques. Advances in Engineering Software, 173, 103267.
- Dutta, S., Murthy, A. R., Kim, D., & Samui, P. (2017). Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling. Computers, Materials & Continua, 53(2).
- Dutta, S., Samui, P., & Kim, D. (2018). Comparison of machine learning techniques to predict the compressive strength of concrete. Comput. Concr. 21(4), 463–470.
- Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., Rajesh Kumar, G., & Krishna Rao, M. V. (2016). Influence of paraffin wax as a self-curing compound in self-compacting concretes. Advances in Cement Research, 28(2), 110–120.
- Madduru, Sri Rama & Pancharathi, Rathish & Giri, P Swamy & G., Rajesh. (2018). Performance studies on self-compacting concrete with self-curing chemicals. Indian Concrete Journal. 92. 24–30.
- Chand, M. S. R., Giri, P. S. N. R., Kumar, P. R., Kumar, G. R., & Raveena, C. (2016). Effect of selfcuring chemicals in self-compacting mortars. Construction and Building Materials, 107, 356–364.
- Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., & Rajesh Kumar, G. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Advances in Cement Research, 30(10), 451–468.
- Gamil, Y., Nilimaa, J., Najeh, T., & Cwirzen, A. (2023). Formwork pressure prediction in cast-in-place self-compacting concrete using deep learning. Automation in Construction, 151, 104869.
- Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Abdul-Jabbar, H., Ostrowski, K. A., Śliwa-Wieczorek, K. (2021). A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials, 14(17), 4934. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ma14174934.
- Siddique, R., Aggarwal, P., Aggarwal, Y. (2011). Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Advances in Engineering Software, 42(11), 780–786.
- Saha, P., Debnath, P., Thomas, P. (2020). Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Computing and Applications, 32(17), 7995–8010.
- Hoang, N. D. (2022). Machine learning-based estimation of the compressive strength of self-compacting concrete: A multi-dataset study. Mathematics, 10(20), 3771. Retrieved from http://dx.doi.org/10.3390/math10203771.
- Prasad, B. K. R., Eskandari H., Reddy B. V. V. (2009). Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction and Building Materials, 23(1), 117–128.
- Mai, H. V. T., Nguyen, M. H., Trinh, S. H., & Ly, H. B. (2023). Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete. Frontiers of Structural and Civil Engineering, 17(2), 284–305.
- Pallapothu, S. N. R. G., Pancharathi, R. K., & Janib, R. (2023). Predicting concrete strength through packing density using machine learning models. Engineering Applications of Artificial Intelligence, 126, 107177.
- Candida Ferreria (2001). Gene expression programming: a new adaptive algorithm for solving problems, Complex Systems, 13(2), 87–129.
- Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22.
- Al-Mughanam, T., Aldhyani, T. H., Alsubari, B., & Al-Yaari, M. (2020). Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network. Sustainability, 12(22), 9322.
- Boser, B.E., Guyon, I.M., and Vapnik, V.N. (1992). A training algorithm for optional margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, 144–152.
- Çevik, A., Kurtoğlu, A. E., Bilgehan, M., Gülşan, M. E., & Albegmprli, H. M. (2015). Support vector machines in structural engineering: a review. Journal of Civil Engineering and Management, 21(3), 261–281.
- Armstrong, N., Sutton, G. J., & Hibbert, D. B. (2019). Estimating probability density functions using a combined maximum entropy moments and Bayesian method. Theory and numerical examples. Metrologia, 56(1), 015019.
- Sharma Ashish (2000). Seasonal to interannual rainfall probabilistic forecast for improved water supply management: part 1-A strategy for system predictor identification. Journal of Hydrology, 239(1), 232–239.