Have a personal or library account? Click to login
Advanced Ai Tools for Predicting Mechanical Properties of Self-Compacting Concrete Cover

Advanced Ai Tools for Predicting Mechanical Properties of Self-Compacting Concrete

Open Access
|Jan 2025

References

  1. Zongjin, L. (2011). Advanced concrete technology. New Jersey: John Wiley and Sons Ltd. ISBN 9780470437438.
  2. De Schutter, G., Bartos, P. J., Domone, P., & Gibbs, J. (2008). Self-compacting concrete, (Vol. 288). Caithness: Whittles Publishing.
  3. Li, H., Yin, J., Yan, P., Sun, H., and Wan, Q. (2020). Experimental investigation on the mechanical properties of self-compacting concrete under uniaxial and trial stress. Materials, 13(8), 1830.
  4. Boukendakdji O, Kadri EH, Kenai S (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Constr. Build Mater. 34, 583–590.
  5. Zhang, X., Luo, Y., Wang, L., Zhang, J., Wu, W., & Yang, C. (2018). Flexural strengthening of damaged RC T-beams using self-compacting concrete jacketing under different sustaining loads. Construction and Building Materials, 172, 185–195. doi:10.1016/j.conbuildmat.2018.03.245.
  6. Chalioris, C. E., & Pourzitidis, C. N. (2012). Rehabilitation of shear-damaged reinforced concrete beams using self-compacting concrete jacketing. ISRN Civil Engineering, 816107. doi:10.5402/2012/816107.
  7. Sucharda, O., Brozovsky, J., & Mikolasek, D. (2014). Numerical modeling and bearing capacity of reinforced concrete beams. Key Engineering Materials, 281–284. doi:10.4028/www.scientific.net/KEM.577-578.281
  8. Czarnecki, S., Shariq, M., Nikoo, M., & Sadowski, L. (2021). An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement: Journal of the International Measurement Confederation, 172, 108951. doi:10.1016/j.measurement.2020.108951.
  9. Nicoara, A. I., Stoica, A. E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., & Vasile, B. S. (2020). End-of-life materials are used as supplementary cementitious materials in the concrete industry. Materials, 13, 1954. doi: 10.3390/ma13081954.
  10. EN British Standard. 450-1, Fly Ash for Concrete-Definition, Specifications, and Conformity Criteria. British Standards Institution; London, UK, 2012.
  11. Asteris, P. G., & Kolovos, K. G. (2019). Self-compacting concrete strength prediction using surrogate models. Neural Computing and Applications, 31(1), 409–424.
  12. Rajakarunakaran, S. A., Lourdu, A. R., Muthusamy, S., Panchal, H., Alrubaie, A. J., Jaber, M. M & Ali, S. H. M. (2022). Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques. Advances in Engineering Software, 173, 103267.
  13. Dutta, S., Murthy, A. R., Kim, D., & Samui, P. (2017). Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling. Computers, Materials & Continua, 53(2).
  14. Dutta, S., Samui, P., & Kim, D. (2018). Comparison of machine learning techniques to predict the compressive strength of concrete. Comput. Concr. 21(4), 463–470.
  15. Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., Rajesh Kumar, G., & Krishna Rao, M. V. (2016). Influence of paraffin wax as a self-curing compound in self-compacting concretes. Advances in Cement Research, 28(2), 110–120.
  16. Madduru, Sri Rama & Pancharathi, Rathish & Giri, P Swamy & G., Rajesh. (2018). Performance studies on self-compacting concrete with self-curing chemicals. Indian Concrete Journal. 92. 24–30.
  17. Chand, M. S. R., Giri, P. S. N. R., Kumar, P. R., Kumar, G. R., & Raveena, C. (2016). Effect of selfcuring chemicals in self-compacting mortars. Construction and Building Materials, 107, 356–364.
  18. Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., & Rajesh Kumar, G. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Advances in Cement Research, 30(10), 451–468.
  19. Gamil, Y., Nilimaa, J., Najeh, T., & Cwirzen, A. (2023). Formwork pressure prediction in cast-in-place self-compacting concrete using deep learning. Automation in Construction, 151, 104869.
  20. Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Abdul-Jabbar, H., Ostrowski, K. A., Śliwa-Wieczorek, K. (2021). A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials, 14(17), 4934. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ma14174934.
  21. Siddique, R., Aggarwal, P., Aggarwal, Y. (2011). Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Advances in Engineering Software, 42(11), 780–786.
  22. Saha, P., Debnath, P., Thomas, P. (2020). Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Computing and Applications, 32(17), 7995–8010.
  23. Hoang, N. D. (2022). Machine learning-based estimation of the compressive strength of self-compacting concrete: A multi-dataset study. Mathematics, 10(20), 3771. Retrieved from http://dx.doi.org/10.3390/math10203771.
  24. Prasad, B. K. R., Eskandari H., Reddy B. V. V. (2009). Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction and Building Materials, 23(1), 117–128.
  25. Mai, H. V. T., Nguyen, M. H., Trinh, S. H., & Ly, H. B. (2023). Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete. Frontiers of Structural and Civil Engineering, 17(2), 284–305.
  26. Pallapothu, S. N. R. G., Pancharathi, R. K., & Janib, R. (2023). Predicting concrete strength through packing density using machine learning models. Engineering Applications of Artificial Intelligence, 126, 107177.
  27. Candida Ferreria (2001). Gene expression programming: a new adaptive algorithm for solving problems, Complex Systems, 13(2), 87–129.
  28. Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22.
  29. Al-Mughanam, T., Aldhyani, T. H., Alsubari, B., & Al-Yaari, M. (2020). Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network. Sustainability, 12(22), 9322.
  30. Boser, B.E., Guyon, I.M., and Vapnik, V.N. (1992). A training algorithm for optional margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, 144–152.
  31. Çevik, A., Kurtoğlu, A. E., Bilgehan, M., Gülşan, M. E., & Albegmprli, H. M. (2015). Support vector machines in structural engineering: a review. Journal of Civil Engineering and Management, 21(3), 261–281.
  32. Armstrong, N., Sutton, G. J., & Hibbert, D. B. (2019). Estimating probability density functions using a combined maximum entropy moments and Bayesian method. Theory and numerical examples. Metrologia, 56(1), 015019.
  33. Sharma Ashish (2000). Seasonal to interannual rainfall probabilistic forecast for improved water supply management: part 1-A strategy for system predictor identification. Journal of Hydrology, 239(1), 232–239.
DOI: https://doi.org/10.2478/acee-2024-0014 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 69 - 86
Submitted on: Oct 25, 2023
Accepted on: Jan 25, 2024
Published on: Jan 10, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Achal AGRAWAL, Narayan CHANDAK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.