Have a personal or library account? Click to login
Advanced Ai Tools for Predicting Mechanical Properties of Self-Compacting Concrete Cover

Advanced Ai Tools for Predicting Mechanical Properties of Self-Compacting Concrete

Open Access
|Jan 2025

Figures & Tables

Figure 1.

ANFIS network designed for the SCC strength modeling [28]
ANFIS network designed for the SCC strength modeling [28]

Figure 2.

Hyperplanes of SVR [30]
Hyperplanes of SVR [30]

Figure 3.

ANN architecture [23]
ANN architecture [23]

Figure 4.

Relative importance of each parameter
Relative importance of each parameter

Figure 5.

Training phase results of ANFIS for CS28
Training phase results of ANFIS for CS28

Figure 6.

Testing phase results of ANFIS for CS28
Testing phase results of ANFIS for CS28

Figure 7.

Training phase results of ANFIS for TS28
Training phase results of ANFIS for TS28

Figure 8.

Testing phase results of ANFIS for TS28
Testing phase results of ANFIS for TS28

Figure 9.

CS28 results from prediction models
CS28 results from prediction models

Figure 10.

TS28 results from prediction models
TS28 results from prediction models

SVM parameters used in the present study [20]

SVM ParameterAdoption/Values
Kernel functionRBF
Scaling factor1
MethodQuadratic programming
Support Vectors13x5
Bias-0.012

Correlation matrix for TS28

VariablesSPPCPPFSFSFDSFTVFTS28
SP1.000.140.000.000.42−0.36−0.320.71
PC0.141.000.020.020.36−0.36−0.440.69
PPF0.000.021.00−0.01−0.670.700.660.21
SF0.000.02−0.011.00−0.300.230.310.29
SFD0.420.36−0.67−0.301.00−0.98−0.960.26
SFT−0.36−0.360.700.23−0.981.000.97−0.23
VF−0.32−0.440.660.31−0.960.971.00−0.25
TS280.710.690.210.290.26−0.23−0.251.00

Performance Matrix for CS28

ModelsIndex of Agreement (IOA)Akaike Information Criterion (AIC)Skill Score (SS)Symmetric Uncertainty (SU)
ANFIS0.50256.340.500.01
ANN0.64232.340.640.29
SVM0.9668.330.960.93
MLR0.51256.040.510.01
GEP0.62159.310.580.73

Performance Matrix for TS28

ModelsIndex of Agreement (IOA)Akaike Information Criterion (AIC)Skill Score (SS)Symmetric Uncertainty (SU)
ANFIS0.67−59.960.670.33
ANN−0.5450.01−0.54−2.07
SVM0.81−99.250.810.61
MLR0.87−127.640.870.74
GEP0.62−51.320.620.25

Correlation matrix for CS28

VARIABLESSPPCPPFSFSFDSFTVFCS28
SP1.000.140.000.000.42−0.36−0.320.68
PC0.141.000.020.020.36−0.36−0.440.72
PPF0.000.021.00−0.01−0.670.700.660.16
SF0.000.02−0.011.00−0.300.230.310.32
SFD0.420.36−0.67−0.301.00−0.98−0.960.28
SFT−0.36−0.360.700.23−0.981.000.97−0.25
VF−0.32−0.440.660.31−0.960.971.00−0.26
CS280.680.720.160.320.28−0.25−0.261.00

Initial values of ANFIS GA parameters [28]

ParametersValues
Population size20
Iterations1000
Crossover rate0.70
Mutation rate0.50
Inversion rate0.10
Selection pressure8.0
Gamma0.20

Dataset for training and testing of different models

SP (kg)PC (kg)PPF (kg)SF (kg)SFD (Dia)SFT (Sec)VF (Sec)CS28 (MPa)TS28 (MPa)Water (kg)FA (kg)CA1 20-10 mm (kg)CA2 10-4.75 mm (kg)
9600007802736.114.41240810365365
96001.5366551339.954.79240810365365
96003663061441.15.26240810365365
9.225615007901.5639.554.67246810365365
9.2256151.5353.077303942.335.66246810365365
9.2256153.076.1569041146.316.12246810365365
9.4563003.157502.5845.526.03252810365365
9.456301.5756.37303849.166.88252810365365
9.456303.1507253946.466.28252810365365
12600067602844.125.86240810365365
126001.507652741.685.53240810365365
126003371041245.096.22240810365365
12.361503.077752748.036.74246810365365
12.36151.5356.157253953.117.26246810365365
12.36153.07071041047.366.67246810365365
12.663006.38101657.167.8252810365365
12.66301.57507852654.37.52252810365365
12.66303.153.157503956.447.76252810365365
3.35650069021152.83.918675058.5391.5
5566.7006802.21657.3417076058.5391.5
5.1566.70396652.81856.95.917076058.5391.5
5.3566.74.55396703.11961.76.917076058.5391.5
5.7566.76.825396603.31858.87.217076058.5391.5
6.2566.79.1396454.22056.76.917076058.5391.5
10500007002.4737.214.251901005310310
10500015760041251.317.21901005310310
105000117.756203.81150.246.251901005310310
10500078.56403.510.550.456.11901005310310
10500039.256503.510.545.644.81901005310310
105000067038.334.874.11901005310310
105000.455157580512.740.525.81901005310310
105000.455117.7560041245.785.81901005310310
105000.45578.56203.51150.446.251901005310310
105000.45539.256303.510.647.865.851901005310310
105000.45506403.210.547.845.751901005310310
105000.911575605.51364.17.251901005310310
105000.91117.755705.512.554.986.151901005310310
105000.9178.5590511.547.645.71901005310310
105000.9139.256104.51146.095.751901005310310
105000.91062041143.963.81901005310310
10500007202.26.839.044.31901005310310
105000157620411.666.697.951901005310310
105000117.7563041153.916.51901005310310
10500078.56403.510.552.316.51901005310310
10500039.256603.510.547.965.71901005310310
10500006802.58.139.534.61901005310310
105000.4551576004.512.552.276.451901005310310
105000.455117.7562041262.677.351901005310310
105000.45578.563041156.926.51901005310310
105000.45539.256403.510.455.136.451901005310310
105000.45506503.510.253.216.21901005310310
105000.911575805.512.569.128.11901005310310
105000.91117.755905.51255.686.81901005310310
105000.9178.5600511.850.056.41901005310310
105000.9139.2562041146.55.91901005310310
105000.910630410.646.054.41901005310310
105000074026.842.834.951901005310310
105000157630411.668.148.051901005310310
105000117.7563041164.797.51901005310310
10500078.56503.210.556.556.651901005310310
10500039.25660310.549.825.91901005310310
10500007002.58.146.724.751901005310310
105000.4551576204.512.560.2271901005310310
105000.455117.7563041269.718.151901005310310
105000.45578.564041164.527.41901005310310
105000.45539.256503.510.456.76.61901005310310
105000.4550670310.253.736.551901005310310
105000.91157600512.569.798.151901005310310
105000.91117.7561051256.677.751901005310310
105000.9178.56204.511.852.486.81901005310310
105000.9139.256403.51149.66.151901005310310
105000.9106503.510.649.451901005310310

GEP parameters [27]

ParametersValues
Population size30
Genes per chromosome3
Gene head length9
Functions+, -./, *,^
Gene tail length12
Mutation rate0.05
Inversion rate0.1
Gene transposition rate0.1
One-point recombination rate0.3
Two-point recombination rate0.3
Gene recombination rate0.1
Fitness functionR≥0.7
DOI: https://doi.org/10.2478/acee-2024-0014 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 69 - 86
Submitted on: Oct 25, 2023
Accepted on: Jan 25, 2024
Published on: Jan 10, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Achal AGRAWAL, Narayan CHANDAK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.