References
- Nidheesh, P. V, Divyapriya, G., Ezzahra Titchou, F., & Hamdani, M. (2022). Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 293(April), 121115.
- Ma, Z., Chang, H., Liang, Y., Meng, Y., Ren, L., & Liang, H. (2024). Research progress and trends on state-of-the-art membrane technologies in textile wastewater treatment. Separation and Purification Technology, 333(November 2023), 125853.
- Mishra, V., Mudgal, N., Rawat, D., Poria, P., Mukherjee, P., Sharma, U., … Sharma, R. S. (2023). Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities. Journal of Water Process Engineering, 55(May), 104128.
- Islam, A., Teo, S. H., Taufiq-Yap, Y. H., Ng, C. H., Vo, D. V N., Ibrahim, M. L., … Awual, M. R. (2021). Step towards the sustainable toxic dyes and heavy metals removal and recycling from aqueous solution-A comprehensive review. Resources, Conservation and Recycling, 175 (August), 105849.
- Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184.
- Champagne, P. P., & Ramsay, J. A. (2010). Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technology, 101 (7), 2230–2235.
- Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120 (June), 108140.
- Carmen, Z., & Daniel, S. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. Organic Pollutants Ten Years After the Stockholm Convention – Environmental and Analytical Update, 2741 (31).
- Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365.
- Shokoohi, R., Vatanpoor, V., Zarrabi, M., & Vatani, A. (2010). Adsorption of acid red 18 (AR18) by activated carbon from poplar wood - A kinetic and equilibrium study. E-Journal of Chemistry, 7(1), 65–72.
- Chen, Y., Long, W., & Xu, H. (2019). Efficient removal of Acid Red 18 from aqueous solution by insitu polymerization of polypyrrole-chitosan composites. Journal of Molecular Liquids, 287, 110888.
- Amin, M. S. A., Stüber, F., Giralt, J., Fortuny, A., Fabregat, A., & Font, J. (2023). Compact tubular carbon-based membrane bioreactors for the anaerobic decolorization of azo dyes. Journal of Environmental Chemical Engineering, 11 (5), 110633.
- Zahrim, A. Y., & Hilal, N. (2013). Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resources and Industry, 3, 23–34.
- Li, H., Liu, S., Zhao, J., & Feng, N. (2016). Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 222–227.
- Riera-Torres, M., Gutiérrez-Bouzán, C., & Crespi, M. (2010). Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1–3), 53–59.
- Sultana, H., Usman, M., & Farooqi, Z. H. (2021). Micellar flocculation for the treatment of synthetic dyestuff effluent: Kinetic, thermodynamic and mechanistic insights. Journal of Molecular Liquids, 344, 117964.
- Suksaroj, C., Héran, M., Allègre, C., & Persin, F. (2005). Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination, 178(1-3 SPEC. ISS.), 333–341.
- Nataraj, S. K., Hosamani, K. M., & Aminabhavi, T. M. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249(1), 12–17.
- Tan, Y. J., Sun, L. J., Li, B. T, Zhao, X. H., Yu, T., Ikuno, N., … Hu, H. Y. (2017). Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand. Desalination, 419 (June), 1–7.
- Khokhlova, T. D., & Hien, L. T. (2007). Adsorption of dyes on activated carbon and graphitic thermal carbon black. Moscow University Chemistry Bulletin, 62(3), 128–131.
- Hadi, M., Samarghandi, M. R., & McKay, G. (2010). Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal, 160(2), 408–416.
- McKay, G., Mesdaghinia, A., Nasseri, S., Hadi, M., & Solaimany Aminabad, M. (2014). Optimum isotherms of dyes sorption by activated carbon: Fractional theoretical capacity & error analysis. Chemical Engineering Journal, 251, 236–247.
- Özacar, M., & Şengil, I. A. (2002). Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption, 8(4), 301–308.
- Kazeem, T. S., Lateef, S. A., Ganiyu, S. A., Qamaruddin, M., Tanimu, A., Sulaiman, K. O., … Alhooshani, K. (2018). Aluminium-modified activated carbon as efficient adsorbent for cleaning of cationic dye in wastewater. Journal of Cleaner Production, 205, 303–312.
- Quan, X., Luo, D., Wu, J., Li, R., Cheng, W., & Ge, shuping. (2017). Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor. Journal of Environmental Chemical Engineering, 5(1), 283–291.
- Bes-Piá, A., Iborra-Clar, A., Mendoza-Roca, J. A., Iborra-Clar, M. I., & Alcaina-Miranda, M. I. (2004). Nanofiltration of biologically treated textile effluents using ozone as a pre-treatment. Desalination, 167(1–3), 387–392.
- Srinivasan, S. V., Rema, T., Chitra, K., Sri Balakameswari, K., Suthanthararajan, R., Uma Maheswari, B., … Rajamani, S. (2009). Decolourisation of leather dye by ozonation. Desalination, 235(1–3), 88–92.
- Turhan, K., & Turgut, Z. (2009). Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination, 242(1–3), 256–263.
- Gao, L., Zhai, Y., Ma, H., & Wang, B. (2009). Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 46(2), 226–229.
- Gültekin, I., & Ince, N. H. (2006). Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of a-substituents. Ultrasonics Sonochemistry, 13(3), 208–214.
- Konsowa, A. H. (2003). Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158(1–3), 233–240.
- Asaithambi, P., Sajjadi, B., Abdul Aziz, A. R., & Daud, W. M. A. B. W. (2017). Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD and determination of electrical energy from landfill leachate. Separation and Purification Technology, 172, 442–449.
- Katsoyiannis, I. A., Canonica, S., & von Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 45(13), 3811–3822.
- Dadban Shahamat, Y., Masihpour, M., Borghei, P., & Hoda Rahmati, S. (2022). Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorganic Chemistry Communications, 143(April), 109785.
- Collivignarelli, M. C., Abbà, A., Carnevale Miino, M., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236(February), 727–745.
- Song, H., Chen, C., Zhang, H., & Huang, J. (2016). Rapid decolorization of dyes in heterogeneous Fenton-like oxidation catalyzed by Fe-incorporated Ti-HMS molecular sieves. Journal of Environmental Chemical Engineering, 4(1), 460–467.
- Gonçalves, R. G. L., Lopes, P. A., Resende, J. A., Pinto, F. G., Tronto, J., Guerreiro, M. C., … Neto, J. L. (2019). Performance of magnetite/layered double hydroxide composite for dye removal via adsorption, Fenton and photo-Fenton processes. Applied Clay Science, 179 (May), 105152.
- Shi, X., Tian, A., You, J., Yang, H., Wang, Y., & Xue, X. (2018). Degradation of organic dyes by a new heterogeneous Fenton reagent – Fe2GeS4 nanoparticle. Journal of Hazardous Materials, 353, 182–189. Retrieved from https://doi.org/10.1016/j.jhazmat.2018.04.018
- Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443–450.
- Gu, L., Li, C., Wen, H., Zhou, P., Zhang, D., Zhu, N., & Tao, H. (2017). Facile synthesis of magnetic sludgebased carbons by using Electro-Fenton activation and its performance in dye degradation. Bioresource Technology, 241 (2017), 391–396.
- Alimard, P. (2019). Fabrication and kinetic study of Nd-Ce doped Fe3O4-chitosan nanocomposite as catalyst in Fenton dye degradation. Polyhedron, 171, 98–107.
- Mozia, S., Tomaszewska, M., & Morawski, A. W (2005). Photocatalytic degradation of azo-dye Acid Red 18. Desalination, 185(1–3), 449–456.
- Mozia, S., Tomaszewska, M., & Morawski, A. W (2007). Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed. Dyes and Pigments, 75(1), 60–66.
- Bessegato, G. G., Cardoso, J. C., da Silva, B. F., & Zanoni, M. V. B. (2016). Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Applied Catalysis B: Environmental, 180, 161–168.
- Zhang, M., Gong, J., Zeng, G., Zhang, P., Song, B., Cao, W, … Huan, S. (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559(July), 169–183.
- Waghchaure, R. H., Adole, V. A., & Jagdale, B. S. (2022). Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications, 143 (May), 109764.
- Javanbakht, V., & Mohammadian, M. (2021). Photoassisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. Journal of Molecular Structure, 1239, 130496.
- Du, W N., & Chen, S. T. (2018). Photo-and chemocatalytic oxidation of dyes in water. Journal of Environmental Management, 206, 507–515.
- DYE | WORLD DYE VARIETY Acid Red 18. (n.d.). Retrieved from http://www.worlddyevariety.com/acid-dyes/acid-red-18.html
- Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39.
- Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource technology, 102(19), 8877–8884.
- Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.
- Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295.
- Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, 385–470.
- Jovanovic, D. S. (1969). Physical adsorption of gases I: Isotherms for monolayer and multilayer adsorption. Colloid Polym. Sci., 235, 1203–1214.
- Dubinin, M. M., & Radushkevich, L. V. (1947). The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331–337.
- Sips, R. (1948). On the Structure of a Catalyst Surface. The Journal of Chemical Physics, 16(5), 490–495.
- Tóth, J. (1971). State Equation of the Solid-Gas Interface Layers.
- dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., & Lassi, U. (2023). Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 669(February), 131493.
- Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99–105.
- Pieczykolan, B., & Płonka, I. (2019). Post Coagulation Sludge as an Adsorbent of Dyes from Aqueous Solutions. Ecological Chemistry and Engineering S, 26(3), 509–520.
- Pieczykolan, B., & Płonka, I. (2019). Application of Excess Activated Sludge as Waste Sorbent for Dyes Removal from their Aqueous Solutions. Ecological Chemistry and Engineering S, 26(4), 773–784.
- Larous, S., & Meniai, A. H. (2016). Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. International Journal of Hydrogen Energy, 41 (24), 10380–10390.
- Fadzail, F., Hasan, M., Mokhtar, Z., & Ibrahim, N. (2022). Removal of naproxen using low-cost Dillenia Indica peels as an activated carbon. Materials Today: Proceedings, 57(3), 1108–1115.
- Shabandokht, M., Binaeian, E., & Tayebi, H. A. (2016). Adsorption of food dye Acid red 18 onto polyaniline-modified rice husk composite: isotherm and kinetic analysis. Desalination and Water Treatment, 57(57), 27638–27650.
- Liu, A., He, S., Zhang, J., Liu, J., & Shao, W. (2023). Preparation and characterization of novel cellulose based adsorbent with ultra-high methylene blue adsorption performance. Materials Chemistry and Physics, 296(September 2022), 127261.
- Can, N., Ömür, B. C., & Altindal, A. (2016). Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators, B: Chemical, 237, 953–961.
- Dragan, E. S., & Apopei Loghin, D. F. (2013). Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal, 234, 211–222.
- Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348–354.
- Ullah, S., Bustam, M. A., Al-Sehemi, A. G., Assiri, M. A., Abdul Kareem, F. A., Mukhtar, A., … Gonfa, G. (2020). Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous and Mesoporous Materials, 296(October 2019), 110002.