Have a personal or library account? Click to login
Scale of Resistance of Buildings to Mining Influences – Applicability Assesment Through a Case Study Cover

Scale of Resistance of Buildings to Mining Influences – Applicability Assesment Through a Case Study

Open Access
|Jan 2025

References

  1. Bian Z.F., Miao X.X., Lei S.G. (2012). The challenges of reusing mining and mineral-process in wastes. Science, 337(6095), 702–703.
  2. Chudek M. (2010). Mechanika górotworu z pod stawami zarządzania ochroną środowiska w obszarach górniczych i pogórniczych (Rock mass mechanics with the basics of environmental protection management in mining and post-mining areas). Wydawnictwo Politechniki Śląskiej.
  3. Deck O., Al Heib M., Homand F. (2003). Taking the soil–structure interaction into account in assessing the loading of a structure in a mining subsidence area. Engineering Structures, 25(4), 435–448. Retrieved from https://doi.org/10.1016/S0141-0296(02)00184-0.
  4. Eugênio T.M.C., Fagundes J.F., Viana Q.S., Vilela A.P., Mendes R.F. (2021). Study on the feasibility of using iron ore tailing (iot) on technological properties of concrete roof tiles. Construction and Building Materials, 279, 1–19. Retrieved from https://doi.org/10.1016Zj.conbuildmat.2021.122484.
  5. Florkowska L. (2013). Example building damage caused by mining exploitation in disturbed rock mass. Studia Geotechnica et Mechanica, 35(2), 19–38.
  6. Instrukcja GIG 12/2000. (2000). Zasady oceny możliwości prowadzenia podziemnej eksploatacji górniczej z uwagi na ochronę obiektów budowlanych (Principles of assessing the possibility of conducting underground mining due to the protection of buildings). Wydawnictwo Głównego Instytutu Górnictwa.
  7. Instrukcja ITB nr 416/2006. (2006). Projektowanie budynków na terenach górniczych (Designing buildings in mining areas). Wydawnictwo ITB.
  8. Kapusta Ł., Szojda L. (2021). The role of expansion joints for traditional buildings affected by the curvature of the mining area. Engineering Failure Analysis, 128, 1–25. Retrieved from https://doi.org/10.1016/j.engfailanal.2021.105598.
  9. Karácsonyi B. (1979). Guiding principles for the preparation of hydrological maps for building. Bulletin of the International Association of Engineering Geology, 19, 237–241. Retrieved from https://doi.org/10.1007/BF02600481.
  10. Knothe S. (1984). Prognozowanie wpływów eksploatacji górniczej (Forecasting the influences of mining exploitation). Wydawnictwo Naukowe “Śląsk”.
  11. Kratzsch H. (1983). Mining Subsidence Engineering. Springer-Verlag.
  12. Kwiatek J. (2002). Obiekty budowlane na terenach górniczych (Building structures in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.
  13. Kwiatek J. et al. (1997). Ochrona obiektów budowlanych na terenach górniczych (Protection of buildings in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.
  14. Marescotti P., Azzali E., Servida D. (2010). Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environmental Earth Sciences, 61, 187–199. Retrieved from https://doi.org/10.1007/s12665-009-0335-7.
  15. Mutke G. i inni (2018). Zasady stosowania Górniczej Skali Intensywności Sejsmicznej GSIS-2017 do prognozy i oceny skutków oddziaływania wstrząsów indukowanych eksploatacją na obiekty budowlane oraz klasyfikacji ich odporności dynamicznej (Principles of applying the Mining Seismic Intensity Scale GSIS-2017 to the forecast and assessment of the effects of shocks induced by exploitation on building structures and the classification of their dynamic resistance). Prace Naukowe GIG, Górnictwo i Środowisko, 64.
  16. Orwat J. (2020). Mining exploitation forecasted effects caused by a hard coal extraction from a thick seam. Journal of Physics: Conference Series, 1426(1), 1–8.
  17. Orwat J., Gromysz K. (2021). Occurrence consequences of mining terrain surface discontinuous linear deformations in a residential building. Journal of Physics: Conference Series, 1781 (1), 1–11.
  18. Quanyuan W., Jiewu P., Shanzhong Q., Yiping L., Congcong H., Tingxiang L., Lime H. (2009). Impacts of coal mining subsidence on the surface landscape in Longkou City, Shandong Province of China. Environmental Earth Sciences, 59, 783–791.
  19. Rozporządzenie Ministra Środowiska z dnia 8 grudnia 2017 r. w sprawie planów ruchów zakładów górniczych (Regulation of the Minister of the Environment of December 8, 2017 on mining plant operations plans). Dziennik Ustaw z 2017 poz. 2293.
  20. Saeidi A., Deck O., Verdel T. (2009). Development of building vulnerability functions in subsidence regions from empirical methods. Engineering Structures, 31 (10), 2275–2286. Retrieved from https://doi.org/10.1016/j.engstruct.2009.04.010.
  21. Słowik L. (2015). Wpływ nachylenia terenu spowodowanego podziemną eksploatacją górniczą na wychylenie obiektów budowlanych (The influence of the slope of the terrain caused by underground mining on the inclination of buildings) (PhD thesis, Building Research Institute), Poland, Warszawa.
  22. Stockmann M., Hirsch D., Lippmann-Pipke J. (2013). Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environmental Earth Sciences, 68, 1153–1168. Retrieved from https://doi.org/10.1007/s12665-012-1817-6.
  23. Strzałkowski P. (2019). Some remarks on impact of mining based on an example of building deformation and damage caused by mining in conditions of Upper Silesian Coal Basin. Pure and Applied Geophysics, 176(6), 2595–2605.
  24. Strzałkowski P. (2015). Zarys ochrony terenów górniczych (Outline of the protection of mining areas). Wydawnictwo Politechniki Śląskiej.
  25. Szojda L., Kapusta Ł. (2021). Numerical analysis of the influence of mining ground deformation on the structure of a masonry residential building. Archives of Civil Engineering, 67(3), 243–257.
  26. Szojda L., Wandzik G. (2019). Discontinuous terrain deformation – forecasting and consequences of their occurrence for building structures. 29th International Conference on Structural Failures. ICSF 2019, 1–12. Retrieved from https://doi.org/10.1051/matecconf/201928403010.
  27. Ścigała R. (2008). Komputerowe wspomaganie prognozowania deformacji górotworu i powierzchni wywołanych podziemną eksploatacją górniczą (Computer aided forecasting of rock mass and surface deformations caused by underground mining). Wydawnictwo Politechniki Śląskiej.
  28. Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze (The Act of June 9, 2011 Geological and Mining Law). Dziennik Ustaw z 2011 nr 163 poz. 981 z późn. zm.
  29. Vandana M., John S.E., Maya K. (2020). Environmental impact of quarrying of building stones and laterite blocks: a comparative study of two river basins in Southern Western Ghats, India. Environmental Earth Sciences, 79 (14), 1–15. Retrieved from https://doi.org/10.1007/s12665-020-09104-1.
  30. Whittaker B.N., Reddish, D.J. (1989). Subsidence Occurrence, Prediction and Control. Developments in Geotechnical Engineering. Elsevier.
  31. Zhu X., Guo G., Zha J., Chen T., Fang Q., Yang X. (2016). Surface dynamic subsidence prediction model of solid backfill mining. Environmental Earth Sciences, 75 (12), 1–9.
DOI: https://doi.org/10.2478/acee-2024-0004 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 51 - 61
Submitted on: Dec 31, 2021
Accepted on: Aug 25, 2023
Published on: Jan 9, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Katarzyna NOWAK, Piotr STRZAŁKOWSKI, Leszek SZOJDA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.