References
- Liu, Y. (1996). Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures (PhD thesis, Virginia Polytechnic Institute and State University), Blacksburg, VA, United States.
- Bazant, Z. P. (1979). Physical model for steel corrosion in concrete sea structures—application. Journal of the Structural Division, ASCE, 105(6), 1155–1166. https://doi.org/10.1061/JSDEAG.0005169.
- Pantazopoulou, S. J., & Papoulia, K. D. (2001). Modeling Cover-Cracking due to Reinforcement Corrosion in RC Structures. Journal of Engineering Mechanics, 127(4), 342–351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)
- Jamali, A., Angst, U., Adey, B., & Elsener, B. (2013). Modeling of corrosion-induced concrete cover cracking: A critical analysis. Construction and Building Materials, 42, 225–237. https://doi.org/10.1016/j.conbuildmat.2013.01.019.
- Martín-Pérez, B. (1999). Service Life Modelling of R.C. Highway Structures Exposed to Chlorides (PhD Thesis, University of Toronto), Toronto, Canada.
- Molina, F. J., Alonso, C., & Andrade, C. (1993). Cover cracking as a function of rebar corrosion: Part 2 - Numerical model. Materials and Structures, 26(9), 532–548. https://doi.org/10.1007/BF02472864.
- Ožbolt, Joško, Oršanic, F., Gojko, B., & Kušte, M. (2012). Modeling damage in concrete caused by corrosion of reinforcement: coupled 3D FE model. International Journal of Fracture, 178, 233–244. https://doi.org/10.1007/s10704-012-9774-3.
- Wieczorek, B., & Krykowski, T. (2017). Zastosowanie reguł mechaniki uszkodzeń do oceny wzrostu odkształceń korozyjnych w warstwie przejściowej (Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer). Ochrona Przed Korozją, 60(1), 5–8. https://doi.org/10.15199/40.2017.1.1.
- Krykowski, T., Jaśniok, T., Recha, F., & Karolak, M. (2020). A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including Computational and Experimental Verification. Materials, 13(23), 5375. https://doi.org/10.3390/ma13235375.
- German, M., & Pamin, J. (2015). FEM simulations of cracking in RC beams due to corrosion progress. Archives of Civil and Mechanical Engineering. https://doi.org/10.1016/j.acme.2014.12.010.
- Pluciński, P. (2008). Numeryczna analiza efektów mechanicznych korozji stali zbrojeniowej w betonie (Numerical analysis of mechanical effects of rebar corrosion in concrete structures) (PhD thesis, Cracow University of Technology). Poland, Kraków.
- Cao, C., & Cheung, M. M. S. (2014). Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials, 51, 75–81. https://doi.org/10.1016/j.conbuildmat.2013.10.042.
- Chauhan, A., & Sharma, U. K. (2021). Crack propagation in reinforced concrete exposed to non-uniform corrosion under real climate. Engineering Fracture Mechanics, 248, 107719. https://doi.org/10.1016/j.engfracmech.2021.107719.
- Alfano, G., & Crisfield, M. A. (2001). Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. International Journal for Numerical Methods in Engineering, 50(7). https://doi.org/10.1002/nme.93.
- Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Červenka, J., & Papanikolaou, V. K. (2008). Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 24(12), 2192–2220. https://doi.org/10.1016/j.ijplas.2008.01.004.
- Dai, L., Long, D., & Wang, L. (2021). Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands. Computers and Structures, 254, 106615. https://doi.org/10.1016/j.compstruc.2021.106615.
- Zhang, Y., & Su, R. K. L. (2020). Corner cracking model for non-uniform corrosion-caused deterioration of concrete covers. Construction and Building Materials, 234, 117410. https://doi.org/10.1016/j.conbuildmat.2019.117410.
- Su, R. K. L., & Zhang, Y. (2019). A novel elastic-body-rotation model for concrete cover spalling caused by non-uniform corrosion of reinforcement. Construction and Building Materials, 213, 549–560. https://doi.org/10.1016/j.conbuildmat.2019.04.096.
- Baji, H. (2020). Stochastic modelling of concrete cover cracking considering spatio-temporal variation of corrosion. Cement and Concrete Research, 133, 106081. https://doi.org/10.1016/j.cemconres.2020.106081.
- Yurkova, K., & Krykowski, T. (2022). Modelowanie powstawania produktów korozji zbrojenia i ich wpływu na uszkodzenie otuliny betonowej (Modeling of the formation of reinforcement corrosion products and their impact on damage of the concrete cover). Inżynieria i Budownictwo, 78(9–10), 410–413.
- Seetharam, S. C., Laloy, E., Jivkov, A., Yu, L., Phung, Q. T., Pham, N. P., Kursten, B., & Druyts, F. (2019). A mesoscale framework for analysis of corrosion induced damage of concrete. Construction and Building Materials, 216, 347–361. https://doi.org/10.1016/j.conbuildmat.2019.04.252.
- Šavija, B., Luković, M., Pacheco, J., & Schlangen, E. (2013). Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study. Construction and Building Materials, 44, 626–638. https://doi.org/10.1016/j.conbuildmat.2013.03.063.
- Nguyen, T. T. H., Bary, B., & De Larrard, T. (2015). Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete. Cement and Concrete Research, 74, 95–107. https://doi.org/10.1016/j.cemconres.2015.04.008.
- Ožbolt, J., Balabanić, G., Periškić, G., & Kušter, M. (2010). Modelling the effect of damage on transport processes in concrete. Construction and Building Materials, 24(9), 1638–1648. https://doi.org/10.1016/j.conbuildmat.2010.02.028.
- Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2012). Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element. Engineering Fracture Mechanics, 93, 92–107. https://doi.org/10.1016/j.engfracmech.2012.06.010.
- Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2011). Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902. https://doi.org/10.1016/j.cemconres.2011.04.008.
- Jin, H., & Yu, S. (2022). Study on corrosion-induced cracks for the concrete with transverse cracks using an improved CDM-XFEM. Construction and Building Materials, 318, 126173. https://doi.org/10.1016/j.conbuildmat.2021.126173.
- Zreid, I., & Kaliske, M. (2014). Regularization of microplane damage models using an implicit gradient enhancement. International Journal of Solids and Structures, 51(19–20). https://doi.org/10.1016/j.ijsolstr.2014.06.020.
- Zreid, I., & Kaliske, M. (2018). A gradient enhanced plasticity–damage microplane model for concrete. Computational Mechanics, 62(5). https://doi.org/10.1007/s00466-018-1561-1.
- Bažant, Z. P., & Gambarova, P. G. (1984). Crack Shear in Concrete: Crack Band Microplane Model. Journal of Structural Engineering, 110(9). https://doi.org/10.1061/(asce)0733-9445(1984)110:9(2015).
- Bažant, Z. P., & Prat, P. C. (1988). Microplane Model for Brittle Plastic Material: I. Theory. Journal of Engineering https://doi.org/10.1061/(asce)0733-9399(1988)114:10(1672).
- ANSYS Inc. (2023). Material Reference, Canonsburg, USA.
- De Vree, J. H. P., Brekelmans, W. A. M., & van Gils, M. A. J. (1995). Comparison of nonlocal approaches in continuum damage mechanics. Computers & Structures, 55(4), 581–588. https://doi.org/10.1016/0045-7949(94)00501-S.
- Pamin, J. (2004). Gradient-enhanced continuum models: formulation, discretization and application. Cracow University of Technology.
- Wosatko, A. (2021). Comparison of evolving gradient damage formulations with different activity functions. Archive of Applied Mechanics, 91(2), 597–627. https://doi.org/10.1007/s00419-021-01889-2.
- The International Federation for Structural Concrete FIB. (2013). FIB Model Code for Concrete Structures 2010. In J. Walraven (Ed.), 2013 fédération internationale du béton/International Federation for Structural Concrete (fib). https://doi.org/10.1002/9783433604090.
- Jiang, H., & Zhao, J. (2015). Calibration of the continuous surface cap model for concrete. Finite Elements in Analysis and Design, 97, 1–19. https://doi.org/10.1016/j.finel.2014.12.002.