References
- Frahm H. (1911). Device for damping vibrations of bodies. United States Patent. 3576–3580.
- Ormondroyd J., Den Hartog J.P. (1928). The theory of the dynamic vibration absorber. Transactions of ASME. Journal of Applied Mechanics, 50(7), 9–22.
- Dallard P., Fitzpatrick T., Flint A., Low A., Smith R.R., Willford M., Roche M. (2001). London Millennium Bridge: Pedestrian-Induced Lateral Vibration. Journal of Bridge Engineering, 6(6), 412–417.
- Majcher K., Wójcicki Z. (2014). Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 1. Numerical analyses. Archives of Civil and Mechanical Engineering. 14(1), 204–217.
- Kuras P., Ortyl Ł., Owerko T., Kocierz R., Kędzierski M., Podstolak P. (2014). Analysis of effectiveness of steel chimneys vibration dampers using surveying methods. PAK. 60(12).
- Shemshadi M., Karimi M., Veysi F. (2020). A simple method to design and analyze dynamic vibration absorber of pipeline structure using dimensional analysis. Hindawi Shock and Vibration. Article ID 2478371. doi.org/10.1155/2020/2478371.
- Christenson R. E., Hoque S. (2011). Reducing fatigue in wind-excited support structures of traffic signals with innovative vibration absorber. Transportation Research Record Journal of the Transportation Research Board, 2251(1). 16–23. doi.org/10.3141/2251-02.
- Nishihara O., Asami T. (2002). Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). Transactions of ASME Journal of Vibration and Acoustics. 124(4). 576–582. doi.org/10.1115/1.1500335.
- Yang F., Sedaghati R., Esmailzadeh E., (2021). Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 1. 1–25. doi: 10.1177/1077546320984305.
- Yoon G. H., Choi H., So H. (2021). Development and optimization of a resonance-based mechanical dynamic absorber structure for multiple frequencies. Journal of Low Frequency Noise. Vibration and Active Control. 40(2). 880–897. doi.org/10.1177/1461348419855533.
- Soltani P., Deraemaeker A. (2021). Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters. Journal of Vibration and Control, 28(15–16), 2004–2019. doi.org/10.1177/10775463211003414.
- Leimeister, M.; Kolios, A.; Collu, M. (2021). Development of a Framework for Wind Turbine Design and Optimization. Modelling, 2, 105–128. doi.org/10.3390/modelling2010006.
- Du Y., Zou T., Pang F., Hu C., Ma Y., Li H. (2023). Design method for distributed dynamic vibration absorbers of stiffened plate under different boundary constraints. Thin-Walled Structures. 185. 110494. doi.org/10.1016/j.tws.2022.110494.
- Contento A., Di Egidio A., Pagliaro S. (2022). Dynamic and seismic protection of rigid-block-like structures with Combined Dynamic Mass Absorbers. Engineering Structures. 272. doi.org/10.1016/j.engstruct.2022.114999.
- Grosel J., Podwórna M. (2021). Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines. Studia Geotechnica et Mechanica, 43, 1–9. DOI:10.2478/sgem-2021-0030.
- Nasr, A., Mrad, C., Nasri, R. (2022). Explicit Formulas for Optimal Parameters of Friction Dynamic Vibration Absorber Attached to a Damped System Under Various Excitations. Journal of Vibration Engineering & Technology. doi.org/10.1007/s42417-022-00560-6.
- Podwórna M., Śniady P., Grosel J. (2021). Random vibrations of a structure modified by damped absorbers. Probabilistic Engineering Mechanics. 66. doi.org/10.1016/j.probengmech.2021.103151.
- Barredo E., Larios J.G.M., Mayen J., Flores-Hernandez A.A., Colin J. (2019). Optimal design for high-performance passive dynamic vibration absorbers under random vibration. Engineering Structures 2019. 195. 469–489. doi.org/10.1016/j.engstruct.2019.05.105.
- Laurentiu M., Agathoklis G. (2014). Optimal design of novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Engineering Mechanics. 38. 156–164. doi.org/10.1016/j.probengmech.2014.03.007.
- Shum K.M. (2015). Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load. Journal of Sound and Vibrations, 346, 70–80. doi.org/10.1016/j.jsv.2015.02.003.
- Javidialesaadi A., Wierschem N.E. (2018). Optimal design of rotational inertial double tuned mass dampers under random excitation, Engineering Structures. 165. 412–421. doi.org/10.1016/j.engstruct.2018.03.033.
- Martins L. A., Lara Molina F. A., Koroishi E. H., Cavalini A. Ap. Jr. (2020). Optimal design of a dynamic vibration absorber with uncertainties, Journal of Vibration Engineering & Technologies, 8, 133–140. doi.org/10.1007/s42417-019-00084-6.
- Silva A.G., Cavalini A. A. Jr., Steffen V. Jr. (2016). Fuzzy robust design of dynamic vibration absorbers. Hindawi Shock and Vibration. Volume 2016. Article ID 2081518. doi.org/10.1155/2016/2081518.
- Śniady P. (2020). Fundamentals of stochastic structure dynamics (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej.
- Wolfram Mathematica 13. Wolfram Research ©Copyright 1988–2023.
- Langer J. (1980). Dynamics of structures (in Polish). Wydawnictwo Politechniki Wrocławskiej.
- Mielczarek M., Nowogońska B. (2021). Technical problems in the renovation of historic bridges. Case study – road bridge in Cigacice. Civil and Environmental Engineering Reports, 31(1). 70–78. DOI: 10.2478/ceer-2021-0005.
- Dawczyński S., Brol J. (2016). Laboratory tests of old reinforced concrete precast bridge beams. Architecture, Civil Engineering, Environment, 9(2). 57–63. https://doi.org/10.21307/acee-2016-022.
- Bajad, M.N. (2022). Analytical approach for damping model. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-022-00491-3.