Have a personal or library account? Click to login
Optimisation of the Parameters of a Vibration Damper Installed on a Historic Bridge Cover

Optimisation of the Parameters of a Vibration Damper Installed on a Historic Bridge

Open Access
|Dec 2023

References

  1. Frahm H. (1911). Device for damping vibrations of bodies. United States Patent. 3576–3580.
  2. Ormondroyd J., Den Hartog J.P. (1928). The theory of the dynamic vibration absorber. Transactions of ASME. Journal of Applied Mechanics, 50(7), 9–22.
  3. Dallard P., Fitzpatrick T., Flint A., Low A., Smith R.R., Willford M., Roche M. (2001). London Millennium Bridge: Pedestrian-Induced Lateral Vibration. Journal of Bridge Engineering, 6(6), 412–417.
  4. Majcher K., Wójcicki Z. (2014). Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 1. Numerical analyses. Archives of Civil and Mechanical Engineering. 14(1), 204–217.
  5. Kuras P., Ortyl Ł., Owerko T., Kocierz R., Kędzierski M., Podstolak P. (2014). Analysis of effectiveness of steel chimneys vibration dampers using surveying methods. PAK. 60(12).
  6. Shemshadi M., Karimi M., Veysi F. (2020). A simple method to design and analyze dynamic vibration absorber of pipeline structure using dimensional analysis. Hindawi Shock and Vibration. Article ID 2478371. doi.org/10.1155/2020/2478371.
  7. Christenson R. E., Hoque S. (2011). Reducing fatigue in wind-excited support structures of traffic signals with innovative vibration absorber. Transportation Research Record Journal of the Transportation Research Board, 2251(1). 16–23. doi.org/10.3141/2251-02.
  8. Nishihara O., Asami T. (2002). Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). Transactions of ASME Journal of Vibration and Acoustics. 124(4). 576–582. doi.org/10.1115/1.1500335.
  9. Yang F., Sedaghati R., Esmailzadeh E., (2021). Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 1. 1–25. doi: 10.1177/1077546320984305.
  10. Yoon G. H., Choi H., So H. (2021). Development and optimization of a resonance-based mechanical dynamic absorber structure for multiple frequencies. Journal of Low Frequency Noise. Vibration and Active Control. 40(2). 880–897. doi.org/10.1177/1461348419855533.
  11. Soltani P., Deraemaeker A. (2021). Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters. Journal of Vibration and Control, 28(15–16), 2004–2019. doi.org/10.1177/10775463211003414.
  12. Leimeister, M.; Kolios, A.; Collu, M. (2021). Development of a Framework for Wind Turbine Design and Optimization. Modelling, 2, 105–128. doi.org/10.3390/modelling2010006.
  13. Du Y., Zou T., Pang F., Hu C., Ma Y., Li H. (2023). Design method for distributed dynamic vibration absorbers of stiffened plate under different boundary constraints. Thin-Walled Structures. 185. 110494. doi.org/10.1016/j.tws.2022.110494.
  14. Contento A., Di Egidio A., Pagliaro S. (2022). Dynamic and seismic protection of rigid-block-like structures with Combined Dynamic Mass Absorbers. Engineering Structures. 272. doi.org/10.1016/j.engstruct.2022.114999.
  15. Grosel J., Podwórna M. (2021). Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines. Studia Geotechnica et Mechanica, 43, 1–9. DOI:10.2478/sgem-2021-0030.
  16. Nasr, A., Mrad, C., Nasri, R. (2022). Explicit Formulas for Optimal Parameters of Friction Dynamic Vibration Absorber Attached to a Damped System Under Various Excitations. Journal of Vibration Engineering & Technology. doi.org/10.1007/s42417-022-00560-6.
  17. Podwórna M., Śniady P., Grosel J. (2021). Random vibrations of a structure modified by damped absorbers. Probabilistic Engineering Mechanics. 66. doi.org/10.1016/j.probengmech.2021.103151.
  18. Barredo E., Larios J.G.M., Mayen J., Flores-Hernandez A.A., Colin J. (2019). Optimal design for high-performance passive dynamic vibration absorbers under random vibration. Engineering Structures 2019. 195. 469–489. doi.org/10.1016/j.engstruct.2019.05.105.
  19. Laurentiu M., Agathoklis G. (2014). Optimal design of novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Engineering Mechanics. 38. 156–164. doi.org/10.1016/j.probengmech.2014.03.007.
  20. Shum K.M. (2015). Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load. Journal of Sound and Vibrations, 346, 70–80. doi.org/10.1016/j.jsv.2015.02.003.
  21. Javidialesaadi A., Wierschem N.E. (2018). Optimal design of rotational inertial double tuned mass dampers under random excitation, Engineering Structures. 165. 412–421. doi.org/10.1016/j.engstruct.2018.03.033.
  22. Martins L. A., Lara Molina F. A., Koroishi E. H., Cavalini A. Ap. Jr. (2020). Optimal design of a dynamic vibration absorber with uncertainties, Journal of Vibration Engineering & Technologies, 8, 133–140. doi.org/10.1007/s42417-019-00084-6.
  23. Silva A.G., Cavalini A. A. Jr., Steffen V. Jr. (2016). Fuzzy robust design of dynamic vibration absorbers. Hindawi Shock and Vibration. Volume 2016. Article ID 2081518. doi.org/10.1155/2016/2081518.
  24. Śniady P. (2020). Fundamentals of stochastic structure dynamics (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej.
  25. Wolfram Mathematica 13. Wolfram Research ©Copyright 1988–2023.
  26. Langer J. (1980). Dynamics of structures (in Polish). Wydawnictwo Politechniki Wrocławskiej.
  27. Mielczarek M., Nowogońska B. (2021). Technical problems in the renovation of historic bridges. Case study – road bridge in Cigacice. Civil and Environmental Engineering Reports, 31(1). 70–78. DOI: 10.2478/ceer-2021-0005.
  28. Dawczyński S., Brol J. (2016). Laboratory tests of old reinforced concrete precast bridge beams. Architecture, Civil Engineering, Environment, 9(2). 57–63. https://doi.org/10.21307/acee-2016-022.
  29. Bajad, M.N. (2022). Analytical approach for damping model. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-022-00491-3.
DOI: https://doi.org/10.2478/acee-2023-0053 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 93 - 101
Submitted on: Apr 28, 2023
Accepted on: May 28, 2023
Published on: Dec 31, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Monika Podwórna, Jacek Grosel, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.