Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review, Biofouling, 29(6), 715–733.
Mujah, D., Shahin, M. A., & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiology Journal, 34(6), 524–537.
Rajasekar, A., Wilkinson, S., & Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, 100096.
Dhami N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314.
Anbu, P., Kang, C., Shin, Y., & So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.
Seifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591–2602.
DeJong, J. T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392.
Cheng L., Cord-Ruwisch R., & Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90.
Wang, Y., Soga, K., DeJong, J.T., & Kabla, A.J. (2021). Effects of bacterial density on growth rate and characteristics of Microbial-Induced CaCO3 precipitates: particle-scale experimental study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036.
De Muynck, W., De Belie, N., & Verstraete, W., (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136.
Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus phaericus. Heliyon, 8(7), e09879.
Erdmann, N., de Payrebrune, K. M., Ulber, R., & Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. SN Applied Sciences, 4, 282.
Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423.
Ivanov, V., & Chu, J. (2008). Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology, 7, 139–153.
van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.
Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117.
Jiang, N., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Geotechnique, 67, 42–55.
Cheng L., & Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385.
Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49–55.
Ng W. S., Lee M. L., & Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 6(2), 723–729.
Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015057.
Nemati, M., Greene, E., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933.
Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587–598.
Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094.
Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019033.
Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221.
Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015066.
Harran, R., Terzis, D., & Laloui, L. (2022). Characterizing the deformation evolution with stress and time of biocemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 148(10), 04022074.
Montoya, B. M., DeJong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302–312.
Sharma, M., & Satyam, N. (2021). Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma, 402, 115359.
Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., & Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. Environmental Science & Technology, 46(15), 8351–8355.
Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549.
Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. Scientific Reports, 11(1), 6161.
Zhao, Y., Xiao, Z., Lv, J., Shen, W., & Xu, R. (2019) A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand, Geomicrobiology Journal, 36(9), 819–825.
Al Qabany, A., Soga, K. and Santamarina, C. (2012). Factors affecting efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001.
Cardoso, R., Pedreira, R., Duarte, S. O., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271, 105612.